

Available online at : http://josi.ft.unand.ac.id/

Jurnal Optimasi Sistem Industri

| ISSN (Print) 2088-4842 |ISSN (Online) 2442-8795|

Research Article

The Effect of Digital Talent on Individual Innovation Behavior, Skills of Revolution Industry 4.0 as Mediator Variables

Riri Nofrita¹, Insannul Kamil^{1,3}, Jonrinaldi¹, Berry Yuliandra^{2,3}, Irsyadul Halim^{1,3}

¹Department of Industrial Engineering, Faculty of Engineering, Universitas Andalas, Kampus Limau Manis, Padang 25163, West Sumatra, Indonesia ²Department of Mechanical Engineering, Faculty of Engineering, Universitas Andalas, Kampus Limau Manis, Padang 25163, West Sumatra, Indonesia ³Big Data and Smart System Development Centre, Universitas Andalas, Kampus Limau Manis, Padang 25163, West Sumatra, Indonesia

ARTICLE INFORMATION

Received: January 25, 20 Revised: November 18, 20 Available online: November 20, 20

KEYWORDS

Revolution Industry 4.0, Digital Talent, Individual Innovation Behavior, Skills of Revolution Industry 4.0, SEM-PLS

CORRESPONDENCE

Phone: +6281363263363

E-mail: insannulkamil@eng.unand.id

INTRODUCTION

Nowadays, the world is facing a global revolution in the industry. There was a change in technology and innovation [1]. All these industrial revolutions did not only the product itself but also the labor market and educational system. As a result of these changes, some professions and jobs disappeared. The core concept of innovation in revolution industry 4.0 is how to face the labor market and global era challenges. The process of innovation includes the innovation of technology and psychology [2]. Innovation technology and connectivity are smart, quick, and effective in developing products in all aspects of life. The economy of acceleration is started with information and communication technology. Information and communication technology are the bases of innovation in Revolution Industry 4.0, where innovation starts with people, making the human capital within the workforce decisive [3][4][5]. The process of innovation is the most important in creating innovative behavior[6]. The innovation behavior is not only an idea, but also the individual behavior related to idea generation (idea invention), introduction (idea promotion), and realization (idea implementation) from the new and useful thing [7].

ABSTRACT

In the face of the Revolution industry 4.0, global connection, artificial intelligence, and automation have disrupted technology. This made the industrial world's development in work competition, not linear and even created new jobs. Digital talent and innovation are needed to face the world of work. This study discusses the construct effect between digital talent, individual innovation behavior, and Skills Revolution Industry 4.0, and the effect of Skills Revolution Industry 4.0) as a mediator to digital talent constructs' relationship. Data collection is obtained directly (face to face). Samples were previously clustered by sampling technique. Questionnaires use the Likert Scale. Then, the data gotten were processed by SEM-PLS with Software 3.8.2. The result showed that digital talent has a positive effect on individual innovation behavior. This meant that skill of revolution industry 4.0 as a construct mediator was successful. The stronger digital talent influences, the stronger individual innovation behavior influences, and it is accelerated with revolution industry skills 4. This study proposes a model to build mastery of digital talent and individual innovation behavior of Universitas Andalas students through the mastery of skills of revolution 4.0 as a mediator. This research can pave the way to improve students' readiness in facing the world of revolution 4.0, one of which is in the field of digital innovation.

> Revolution Industry 4.0 starts with artificial intelligence, genetics engineering, automatic cars, nanotechnology, and supercomputer. In the era of Industry 4.0, we are facing a digital revolution and technology disruption. Revolution of Industry 4.0 describes a movement trying to explore and unite some upcoming technology, such as the internet of things and its services, automation industry, connectivity, cybersecurity, and big data analyses. The development revolution 4.0, like sensors, physiccyber system, internet of things, will influence every life [9]. The essential features of the Revolution of Industry 4.0; are machines, devices, sensors, and people, primarily via the Internet (Internet of Things-IoT) to communicate with each other and the ability to communicate[10]. The development of digitalization requires digital talent (digital skill) for operating and mastering digital services. Digital talent is knowledge of software and knowledge on how to solve and learn problems. Digital talent is useful in the technology society group [11]. Digital talent is significant for every organization to join product innovation and become more critical for succeeding in the workplace [12].

> Innovation passes a series of phases before people apply it. Individuals develop their ability to formulate their attitude, make the decision, implement, and confirm whether innovation must be applied or not. Individual innovation is a multi-stages process,

including recognize the problem, generate the idea or solution, search for a sponsor to build a coalition of ideas, solving the idea (like producing a prototype model and process). Individual innovation is supposed as a part of an organization, managerial or non-managerial. Innovation was previously started by the rapid development of information technology (IT), which changes society's mindset and lifestyle. As a consequence, this changes the organization in running a business. IT makes all activities quicker, more comfortable, and accurate, but not all things can be replaced by technology. The application of technology skills requires the skill related to planning, creating interaction in making the decision, and managing human resources [13]. Not only technology faces transformation, but also skills face some changes from time to time. The demands of skills in 2018 had described the tendency of skills for 2022 were system analysis evaluation, emotional intelligence, complex problem solving, creativity, active learning, analytical thinking, technology design, leadership, and reasoning problem-solving [14].

The appearance of digital technology in daily life changes the individual's way of accessing and developing knowledge. Individuals must process complex information, think systematically, and decide by considering various forms of proof. They have to keep renovating their skills to be suitable for the rapid technological changes in the workplace. More basically, to utilize the new chance provided by digital technology in most aspects, the individual must develop a set of skills properly to utilize the technology more meaningful. The increase in using digital technology in the workplace increases the demands of new skills.

Technology development has a strong relation to innovation, especially in creating new technology. Creating new technology and product must follow innovation and skill as a part of creativity. While advances in hardware and software capabilities continue at a staggering pace, their beneficiaries' lack [15]. This is an opportunity for technological innovation.

This research is limited to digital talent's effect on individual innovation behavior and skills revolution 4.0 as a construct mediator, including indicators that significantly influence. The research's focus is that students are pretended to have useful perspectives and follow the technology.

METHODOLOGY

The research method is descriptive, where some constructs are manipulated to observe the influence of other constructs by using a qualitative approach relating to the subjective assessment of attitude, opinion, and behavior. Indicators reflected construct of Skills Revolution Industry 4.0 can be seen in Table 1, indicators construct individual innovation behavior shown in Table 2, indicators reflected construct of Skills Revolution Industry 4.0 could be seen in Table 3.

The questionnaire is designed closed except for questions/statements regarding identity respondents in the form of a semi-open questionnaire. The questionnaires were distributed directly face to face. Each closed question/statement item gave five answer options: very agree score 5, agree score 4, less agree score 3, and disagree score 2, and strongly disagree score 1. The

effects of digital talent on individual innovation behavior and Skills Revolution Industry 4.0 using the SEM-PLS method. Based on the construct an indicator of research, it can be seen in Figure 1.

Table 1. Digital Talent

Construct	Symbols	Indicators
	S1	Change Management [16]
	S 2	Collaboration [16]
	S 3	Comfort With Ambiguity [16]
Soft	S4	Customer-Centricity [16]
Digital	S5	Entrepreneurial mindset [16]
	S 6	Data-driven decision making [16]
	S 7	Organizational dexterity [16]
	S 8	Passion for learning [16]
	H1	Agile [16]
	H2	Analytic [16]
Hard	H3	Cloud Computing [16]
Digital	H4	Search Engine Optimalization/SEO [16]
	H5	Web Development [16]
	R1	Chief Analytics Officer/ Chief Data Officer [16]
	R2	Chief Customer Officer [16]
	R3	Chief Digital Officer/ Chief Digital Information Officer [16]
Role	R4	Chief Internet Of Things Officer [16]
Digital	R5	Data Architect [16]
0	R6	Data Engineer [16]
	R7	Data Scientist [16]
	R8	Digital Project Manager [16]
	R9	Information Security/Privacy Consultant [16]
	R10	Personal Web Manager [16]

Table 2. Individual Innovation Behavior

Indicators	Symbols
Exploring new opportunity [6], [17]	B1
New idea generation [6], [15], [17]	B2
Ability to adopt new product/ service [6],[18]	B3
Championing new idea [15]	B4
New idea implementation [6],[15],[17]	B5
Problem-solving ability [6], [18]	B6
Network building [6],[18]	B7

Research Hypotheses

Research hypotheses are used to test the interrelationship of the construct latent. Based on research formulation, then translated into the purposes of the research, the research hypotheses used are:

- H1: Digital talent has a significant effect on individual innovation behavior.
- H2: Digital talent has significant effect Skills Revolution Industry 4.0

- H3: Skills Revolution Industry 4.0 has a significant effect on individual innovation behavior.
- H4: Skills Revolution Industry 4.0 mediates the relationship between Digital talent and individual innovation behavior.

Table 3. Skills Revolution	Industry	4.0
----------------------------	----------	-----

Construct	Indicators	Symbol
	Analytical Thinking [15][17]	A1
	Initiative [15]	A2
	Creativity [15]	A3
	Responsibility [15],[19]	A4
	Autonomy [15], [19]	A5
Abilities	Originality [15,[19]	A6
	Idea Generation and Reasoning Abilities [15]	A7
	Quantitative Abilities [15]	A8
	Active Learning [15]	C1
	Learning Strategies [15]	C2
	Programming [15]	C3
	Technology Design [15]	C4
	Critical Thinking [15]	C5
	Monitoring [15]	C6
	Complex Problem Solving [15]	C7
Skills	Leadership [15]	C8
SKIIIS	Social Influence [15]	C9
	Concern for Others [15]	C10
	Cooperation [15]	C11
	Social Orientation [15]	C12
	Social Perceptiveness [15]	C13
	Judgment and Decision Making [15]	C14
	System Analysis [15]	C15
	System Evaluation [15]	C16

Data Analysis

Determining the number of samples. The sample for this study is students of Andalas University. Data gathering questionnaires are distributed to all faculties in Andalas University. Determining the number of samples [20]demonstrates that the size of the minimum samples should be the same or more than:

- a. Ten times, the most formative indicators used to measure one construct, or
- b. Ten times, the most structural path is directed to certain constructs in the structural model.

The construct of samples has the most structural path in this research model, namely 16 structural paths so that the calculation of the number of minimum sample $is_{16\times10}=160$. The technique of taking samples is probability sampling by using proportionate stratified random sampling. According to [21], proportionate stratified random sampling is used if populations have homogenous members/elements that are not homogenous or stratify proportionally. Determining the size of samples for each faculty is done by allocating proportionally as seen in Equation 1.

$$X = \frac{N}{P} \times S \tag{1}$$

An example for calculation sample taking in Faculty of Pharmacy can be seen in the following equation; N: 22084, A= 547, S=160

$$X = \frac{547}{22084} \times 160 = 3.96 \ (4 \text{ respondent})$$

Research data collection from questionnaire data is closed, which is distributed directly to respondents of Universitas Andalas students. The following faculties are used as a sampling point.

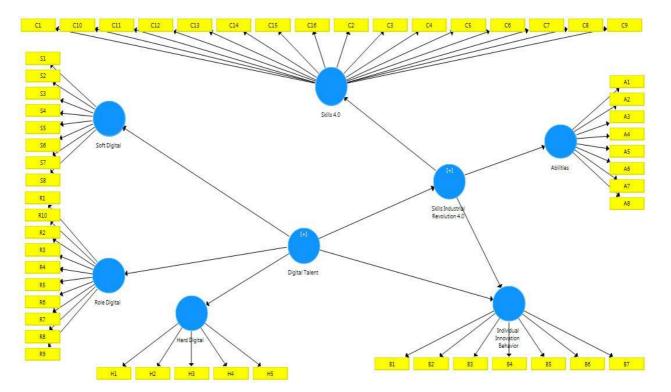


Figure 1. Model of the Research

Table 4. Recapitulation of the Respondents

No.	Departments	Total Students	Number of Samples
1	Agriculture	2314	17
2	Animal Husbandry	1797	15
3	Science	1688	12
4	Engineering	2764	32
5	Agricultural Technology	980	7
6	Information Technology	548	8
7	Medicine	1666	12
8	Dentistry	346	3
9	Nursing	464	6
10	Public Health	885	10
11	Pharmacy	574	7
12	Law	1766	25
13	Economy	2655	32
14	Cultural	1643	22
15	Social Science & Political Science	2021	25
Tota	al Respondents	22084	233

The measurement indicator of this study used the method of SEM-PLS. SEM-PLS is divided into two stages [20],[22]

- a. Outer Model
 - Indicator reliability (Composite reliability): considering loading factor, value correlates more than 0.7.
 - Indicator reliability: Indicator of outer loading should be more than 0.7.
 - Convergent validity by considering loading factor (correlation between item score/component score and construct score). Reflective value is considered high if the value correlates more than 0.70 (x=0.70) with measured latent constructs
 - Discriminant validity is considered adequate if the average variance extracted (AVE) root of each latent constructs more than the correlation among constructs. Value AVE be more than 0,5
 - Consistency Reliability
- b. Inner Model (Structural model)
 - Collinearity test; the computation of the path coefficient linking the construct rests on a series of regression analyses. The researcher must ascertain that collinearity issues do not bias the regression result. This step is analogous to the formative measurement, with the difference being that the scores of the exogenous latent variables serve as input for the VIF assessment.
 - Coefficient of Determination (R2); R2 is a measure of the model's predictive accuracy. R2 values are 0.75 (substantial); 0.5 (moderate); 0.25 (weak).
 - Predictive relevance is Q2 (blindfolding). Resulting Q2 values of large than zero indicate the exogenous construct have predictive relevance for the endogenous construct under consideration.

- Path coefficients; values are standardized on a range from -1 to +1, with coefficient closer to +1 representing a strong positive relationship and coefficient closer to +1 representing a strong negative relationship.
- Effect Size (f2): high value (f2) an exogenous construct strongly contribute to explaining an endogenous construct. (f2) value 0.02 (small effect) 0.15 (medium effect) 0.35 (large effect).

RESULTS AND DISCUSSION

The description of the general of the respondent in this study can be seen in Figure 2. This shows that 73% of respondents are planning to work as civil servants and employees of state companies after graduation, and entrepreneurship means the respondents have understood the mastery of digital talent, skill, and individual innovation behavior. This means that students will face competition in the world of work and the challenges of the revolution of industry 4.0.

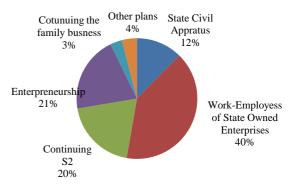


Figure 2. Distribution of Respondent's Planning Graduation

Respondents' Gender		
Data Descriptive	Male	Female
Role Digital skills	3.75	3.58
Soft Digital Skills	4.05	3.92
Hard Digital Skills	3.62	3.48
Skills	3.75	3.55
Abilities	3.70	3.52
IIB	3.76	3.62
Total Mean	22.63	21.67
Average	3,77	3.61

Table 5. Interpretation Data of Mean Value Based onRespondents' Gender

Table 5 shows that the value of male respondents is higher than the value of female respondents. It indicates that the males outperform the males' influence because they quickly master the digital, technology, and industry work world [23].

Based on age, the mastery of digital talent is not influenced by the number of ages. The recent generation is 18 and 23 years old, z generation (Gen Z). They collaborate and use digital devices efficiently. Gen-Z have changed due to technological advancement and need skills in the development of revolution 4.0.

Table 6. Interpretation Data of Mean Value based onRespondents' Age

Data Descriptive	< 20 Years	20-25 Years	<25 Years
Role Digital skills	3.6	3.66	3.57
Soft Digital Skills	4.06	3.99	3.46
Hard Digital Skills	3.5	3.54	3.6
Skills	3.75	3.63	3.27
Abilities	3.62	3.59	3.58
IIB	3.96	3.66	3.43
Total Mean	22.49	22.07	22.68
Average	3.75	3.66	3.68

Presentation of questionnaire data consisting of 23 statements to evaluate digital talent construct, 16 statements to evaluation Skills Revolution Industry 4.0 construct, and seven statements to evaluate individual innovation behavior constructs presented in Table 7.

Table 7. Recapitulation of Respondents' Understanding on the Construct of Digital Talent, Skills Revolution Industry 4.0, and Individual Innovation Behavior

State ment to-	Very Agree	Agree	Less Agree	Dis Agree	Very Dis agree	Total
A. Sof	t Digital					
1	47	111	67	7	1	233
2	74	136	23	0	0	233
3	58	113	59	3	0	233
4	85	112	25	1	0	233
5	70	124	38	1	0	233
6	35	105	93	7	0	233
7	32	109	57	4	1	233
8	62	109	57	4	1	233
B. Ha	rd Digital					
1	2	46	107	60	18	233
2	10	39	115	58	11	233
3	36	93	88	13	3	233
4	70	113	46	3	1	233
5	104	92	35	1	1	233
C. Rol	e Digital					
1	20	65	108	32	8	233
2	50	131	48	4	0	233
3	159	61	12	1	0	233
4	61	92	69	9	2	233
5	30	67	102	28	6	233
6	23	53	85	61	11	233
7	49	83	80	19	2	233
8	35	85	87	22	4	233
9	53	117	50	11	2	233
10	25	74	87	42	5	233

Table 7. Recapitulation of Respondents' Understanding on the
Construct of Digital Talent, Skills Revolution Industry 4.0, and
Individual Innovation Behavior (Cont.)

Stateme nt to-	Agree	Less Agree	Dis Agree	Very Dis agree	Total
Abilities					
1	126	72	4	1	233
2	129	57	2	-	233
3	117	67	7	1	233
4	96	86	20	1	233
5	132	58	5	-	233
6	114	81	6	-	233
7	72	95	49	6	233
8	48	105	60	12	233
Skills					
1	121	76	5	1	233
2	96	102	14	-	233
3	61	117	36	8	233
4	40	72	89	25	233
5	104	90	14	3	233
6	114	75	9	1	233
7	101	107	11	1	233
8	104	77	9	2	233
9	123	81	8	-	233
10	115	48	2	-	233
11	127	41	1	-	233
12	111	67	10	-	233
13	140	47	1	-	233
14	137	66	3	-	233
15	103	92	12	-	233
16	88	118	12	-	233
Individua	l Innovati	ion Behav	vior		
1	102	94	4		233
2	83	113	10	2	233
3	123	73	6	1	233
4	114	89	6	1	233
5	119	86	7	-	233
6	101	105	12	-	233
7	119	62	4	1	233

The Outer Model Test Results

The outer model aims to check the validity and reliability measurement of the indicators in model constructed. These analyses were done to ensure whether questionnaires are reliable to use or not to a measurement device (validation reliable). The test conducted in the outer model is as follows.

Table 8 Value of Mean of Respondents' Answer for Each Indicator

S1 3.762 425 0.780 S2 4.143 425 0.616 S3 3.888 425 0.666 S5 4.063 425 0.666 S5 4.063 425 0.739 S8 3.919 425 0.739 S8 3.919 425 0.738 H1 2.762 315 0.864 H2 2.865 315 0.864 H4 4.027 415 0.766 H5 4.247 415 0.766 H5 4.247 315 0.695 R3 4.574 525 0.608 R4 4.027 415 0.742 R6 3.247 315 0.885 R7 3.910 415 0.608 R4 4.027 415 0.695 R8 4.574 415 0.608 R9 3.812 415 0.608 R9 3.812 415 0.694 A5 3.871 425 0.6	Indicator	Mean	Median	Min	Max	Standard Deviation
S3 3.888 425 0.747 S4 4.175 425 0.666 S5 4.063 425 0.715 S7 3.605 425 0.739 S8 3.919 425 0.788 H1 2.762 315 0.868 H3 3.578 415 0.864 H4 4.027 415 0.742 R1 3.247 315 0.885 R2 3.910 415 0.695 R3 4.574 525 0.608 R4 4.027 415 0.742 R6 3.247 315 0.742 R6 3.247 315 0.695 R8 4.574 415 0.695 R8 4.574 415 0.695 R8 4.574 415 0.695 R8 4.574 415 0.694 A1 3.773 415 0.767 A4 3.575 415 0.694 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.894 C1 3.747 415 0.796 C6 3.734 415 0.7			4			0.780
S44.1754250.666S54.0634250.686S63.6734250.715S73.6054250.739S83.9194250.788H12.7623150.868H33.5784150.766H54.2474150.766H54.2474150.766H54.2473150.695R34.5745250.608R44.0274150.766R54.2473150.742R63.2473150.785R73.9104150.608R93.8124150.608R93.8124150.767A43.5754150.684A33.8154150.767A43.5754150.694A63.7384250.721A73.1423150.889A82.9143150.884C13.7474150.766C63.7344150.768C73.4893150.694C		4.143		2	5	0.616
S5 4.063 425 0.686 S6 3.673 425 0.715 S7 3.605 425 0.739 S8 3.919 425 0.788 H1 2.762 315 0.874 H2 2.865 315 0.864 H4 4.027 415 0.742 R1 3.247 315 0.885 R2 3.910 415 0.766 R5 4.247 315 0.695 R3 4.574 525 0.608 R4 4.027 415 0.766 R5 4.247 315 0.742 R6 3.247 315 0.695 R8 4.574 415 0.608 R9 3.812 415 0.608 R9 3.812 415 0.767 A4 3.575 415 0.694 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A5 3.871 425 0.721 A7 3.142 315 0.889 A5 3.871 425 0.721 A7 3.142 315 0.7	S3	3.888	4	2	5	0.747
S5 4.063 425 0.686 S6 3.673 425 0.715 S7 3.605 425 0.739 S8 3.919 425 0.788 H1 2.762 315 0.874 H2 2.865 315 0.864 H4 4.027 415 0.742 R1 3.247 315 0.885 R2 3.910 415 0.766 R5 4.247 315 0.695 R3 4.574 525 0.608 R4 4.027 415 0.766 R5 4.247 315 0.742 R6 3.247 315 0.695 R8 4.574 415 0.608 R9 3.812 415 0.608 R9 3.812 415 0.767 A4 3.575 415 0.694 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A5 3.871 425 0.721 A7 3.142 315 0.889 A5 3.871 425 0.721 A7 3.142 315 0.7	S 4	4.175	4	2	5	0.666
S7 3.605 425 0.739 S8 3.919 425 0.788 H1 2.762 315 0.868 H2 2.865 315 0.864 H4 4.027 415 0.742 R1 3.578 415 0.742 R1 3.247 315 0.695 R2 3.910 415 0.695 R3 4.574 525 0.608 R4 4.027 415 0.742 R6 3.247 315 0.742 R6 3.247 315 0.608 R9 3.812 415 0.608 R9 3.812 415 0.608 R9 3.812 415 0.702 A2 3.931 425 0.694 A3 3.815 415 0.702 A2 3.931 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.881 C2 3.532 425 0.741 C3 3.133 315 0.694 C4 2.635 3.14 5 0.726 C5 3.549 415 0.726 </td <td>S5</td> <td>4.063</td> <td>4</td> <td>2</td> <td>5</td> <td>0.686</td>	S5	4.063	4	2	5	0.686
S7 3.605 4 2 5 0.739 S8 3.919 4 2 5 0.788 H1 2.762 3 1 5 0.864 H2 2.865 3 1 5 0.864 H4 4.027 4 1 5 0.742 R1 3.247 3 1 5 0.695 R3 4.574 5 2 5 0.608 R4 4.027 4 1 5 0.695 R3 4.574 5 2 5 0.608 R4 4.027 4 1 5 0.742 R6 3.247 3 1 5 0.885 R7 3.910 4 1 5 0.695 R8 4.574 4 1 5 0.695 R8 4.574 4 1 5 0.695 R8 4.574 4 1 5 0.694 A1 3.773 4 1 5 0.876 R10 3.36 3 1 5 0.876 R10 3.336 3 1 5 0.694 A4 3.575 4 1 5 0.721 A7 3.142 3 1 5 0.767 A4 3.575 4 1 5 0.796 C4 2.635 3 1 5 0.694 C1 3.747 4 1 5 0.796 C5	S6	3.673	4	2	5	0.715
S8 3.919 425 0.788 H1 2.762 315 0.874 H2 2.865 315 0.864 H3 3.578 415 0.766 H5 4.247 415 0.742 R1 3.247 315 0.885 R2 3.910 415 0.695 R3 4.574 525 0.608 R4 4.027 415 0.766 R5 4.247 315 0.742 R6 3.247 315 0.766 R5 4.247 315 0.608 R9 3.812 415 0.608 R9 3.812 415 0.608 R9 3.812 415 0.767 A1 3.773 415 0.767 A2 3.931 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.985 C5 3.549 415 0.726 C1 3.742 415 0.726 C1 3.742 415 0.726 C2 3.532 425 0.694 C2 3.674 425 0.6			4		5	
H1 2.762 3 1 5 0.874 H2 2.865 3 1 5 0.868 H3 3.578 4 1 5 0.864 H4 4.027 4 1 5 0.766 H5 4.247 4 1 5 0.742 R1 3.247 3 1 5 0.885 R2 3.910 4 1 5 0.695 R3 4.574 5 2 5 0.608 R4 4.027 4 1 5 0.766 R5 4.247 3 1 5 0.785 R6 3.247 3 1 5 0.695 R8 4.574 4 1 5 0.694 A1 3.773 4 1 5 0.767 A4 3.575 4 1 5 0.684 A3 3.815 4 1 5 0.694 A6 3.738 4 2 5 0.721 A7 3.142 3 1 5 0.894 C1 3.747 4 1 5 0.768 C2 3.532 4 2 5 0.694 C3 <td></td> <td></td> <td>4</td> <td></td> <td>5</td> <td></td>			4		5	
H2 2.865 3 1 5 0.868 H3 3.578 4 1 5 0.864 H4 4.027 4 1 5 0.742 R1 3.247 3 1 5 0.885 R2 3.910 4 1 5 0.695 R3 4.574 5 2 5 0.695 R4 4.027 4 1 5 0.766 R5 4.247 3 1 5 0.695 R8 4.574 4 1 5 0.695 R4 4.574 4 1 5 0.695 R4 4.574 4 1 5 0.694 A1 3.773 4 1 5 0.694 A3 3.812 4 1 5 0.694 A4 3.575 4 1 5 0.694 A5 3.871 4 2 5 0.721 A7 3.142 3 1 5 0.889 A8 2.914 3 1 5 0.768 C7 <td></td> <td></td> <td>3</td> <td></td> <td>5</td> <td></td>			3		5	
H3 3.578 415 0.864 H4 4.027 415 0.766 H5 4.247 415 0.742 R1 3.247 315 0.885 R2 3.910 415 0.695 R3 4.574 525 0.608 R4 4.027 415 0.742 R6 3.247 315 0.885 R7 3.910 415 0.608 R9 3.812 415 0.608 R9 3.812 415 0.608 R9 3.812 415 0.702 A2 3.931 425 0.684 A3 3.815 415 0.702 A2 3.931 425 0.694 A6 3.738 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.726 C10 4.069 425 0.664 C7 3.489 315 0.693 C8 3.742 415 $0.$					5	
H4 4.027 4 1 5 0.766 H5 4.247 4 1 5 0.742 R1 3.247 3 1 5 0.695 R2 3.910 4 1 5 0.695 R3 4.574 5 2 5 0.608 R4 4.027 4 1 5 0.766 R5 4.247 3 1 5 0.742 R6 3.247 3 1 5 0.695 R8 4.574 4 1 5 0.695 R10 3.336 3 1 5 0.926 A1 3.773 4 1 5 0.694 A2 3.931 4 2 5 0.684 A3 3.815 4 1 5 0.694 A6 3.738 4 2 5 0.721 A7 3.142 3 1 5 0.889 A8 2.914 3 1 5 0.889 C1 3.747 4 1 5 0.796 C5 3.549 4 1 5 0.694 C8 3.742 4 1 5 0.694 C8 3.742 4 1 5 0.694 C8 <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td>					5	
H5 4.247 4 1 5 0.742 R1 3.247 3 1 5 0.885 R2 3.910 4 1 5 0.695 R3 4.574 5 2 5 0.608 R4 4.027 4 1 5 0.742 R6 3.247 3 1 5 0.885 R7 3.910 4 1 5 0.695 R8 4.574 4 1 5 0.695 R8 4.574 4 1 5 0.608 R9 3.812 4 1 5 0.608 R9 3.812 4 1 5 0.608 R10 3.36 3 1 5 0.608 A3 3.815 4 1 5 0.702 A2 3.931 4 2 5 0.694 A4 3.575 4 1 5 0.836 A5 3.871 4 2 5 0.721 A7 3.142 3 1 5 0.889 A8 2.914 3 1 5 0.889 A8 2.914 3 1 5 0.786 C7 3.489 3 1 5 0.768 C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.768 C7 3.489 3 1 5 0.642 C10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
R1 3.247 3 1 5 0.885 R2 3.910 4 1 5 0.695 R3 4.574 5 2 5 0.608 R4 4.027 4 1 5 0.766 R5 4.247 3 1 5 0.742 R6 3.247 3 1 5 0.695 R8 4.574 4 1 5 0.695 R8 4.574 4 1 5 0.608 R9 3.812 4 1 5 0.608 R9 3.812 4 1 5 0.702 A2 3.931 4 2 5 0.684 A3 3.815 4 1 5 0.702 A2 3.931 4 2 5 0.694 A6 3.738 4 2 5 0.694 A6 3.738 4 2 5 0.718 C2 3.532 4 2 5 0.741 C3 3.133 3 1 5 0.894 C1 3.747 4 1 5 0.796 C5 3.549 4 1 5 0.694 C8 3.742 4 1 5 0.685 C10 4.069 4 2 5 0.678 C2 3.674 4 2 5 0.642 C4 2.635 3 1 5 0.682 C4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
R2 3.910 4 1 5 0.695 R3 4.574 5 2 5 0.608 R4 4.027 4 1 5 0.742 R6 3.247 3 1 5 0.885 R7 3.910 4 1 5 0.695 R8 4.574 4 1 5 0.608 R9 3.812 4 1 5 0.608 R9 3.812 4 1 5 0.702 A2 3.931 4 2 5 0.684 A3 3.815 4 1 5 0.767 A4 3.575 4 1 5 0.767 A4 3.575 4 1 5 0.836 A5 3.871 4 2 5 0.694 A6 3.738 4 2 5 0.721 A7 3.142 3 1 5 0.889 A8 2.914 3 1 5 0.889 A8 2.914 3 1 5 0.796 C6 3.734 4 1 5 0.768 C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.685 C10 4.069 4 2 5 0.678 C11 3.983 4 2 5 0.642 C3 3.731 4 1 5 0.726 C4<					5	
R3 4.574 525 0.608 R4 4.027 415 0.766 R5 4.247 315 0.742 R6 3.247 315 0.885 R7 3.910 415 0.695 R8 4.574 415 0.608 R9 3.812 415 0.876 R10 3.336 315 0.926 A1 3.773 415 0.702 A2 3.931 425 0.684 A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.894 C4 2.635 315 0.820 C9 3.674 425 0.726 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C1 4.069 425					5	
R4 4.027 4 1 5 0.766 R5 4.247 3 1 5 0.742 R6 3.247 3 1 5 0.885 R7 3.910 4 1 5 0.695 R8 4.574 4 1 5 0.608 R9 3.812 4 1 5 0.926 A1 3.773 4 1 5 0.926 A1 3.773 4 1 5 0.702 A2 3.931 4 2 5 0.684 A3 3.815 4 1 5 0.767 A4 3.575 4 1 5 0.836 A5 3.871 4 2 5 0.694 A6 3.738 4 2 5 0.718 C2 3.532 4 2 5 0.718 C2 3.532 4 2 5 0.796 C4 2.635 3 1 5 0.894 C1 3.734 4 1 5 0.788 C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.820 C9 3.674 4 2 5 0.678 C10 4.069 4 2 5 0.678 C11 4.069 4 2 5 0.678 C12 3.785 4 1 5 0.822 C1					5	
R5 4.247 3 1 5 0.742 R6 3.247 3 1 5 0.885 R7 3.910 4 1 5 0.695 R8 4.574 4 1 5 0.608 R9 3.812 4 1 5 0.876 R10 3.336 3 1 5 0.926 A1 3.773 4 1 5 0.702 A2 3.931 4 2 5 0.684 A3 3.815 4 1 5 0.767 A4 3.575 4 1 5 0.836 A5 3.871 4 2 5 0.694 A6 3.738 4 2 5 0.767 A4 3.575 4 1 5 0.836 A5 3.871 4 2 5 0.694 A6 3.738 4 2 5 0.718 C2 3.532 4 2 5 0.718 C2 3.532 4 2 5 0.741 C3 3.133 3 1 5 0.796 C4 2.635 3 1 5 0.796 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.694 C8 3.742 4 1 5 0.685 C10 4.069 4 2 5 0.643 C12						
R6 3.247 3 1 5 0.885 R7 3.910 4 1 5 0.695 R8 4.574 4 1 5 0.608 R9 3.812 4 1 5 0.876 R10 3.336 3 1 5 0.926 A1 3.773 4 1 5 0.702 A2 3.931 4 2 5 0.684 A3 3.815 4 1 5 0.767 A4 3.575 4 1 5 0.836 A5 3.871 4 2 5 0.694 A6 3.738 4 2 5 0.694 A6 3.738 4 2 5 0.767 A7 3.142 3 1 5 0.889 A8 2.914 3 1 5 0.894 C1 3.747 4 1 5 0.718 C2 3.532 4 2 5 0.741 C3 3.133 3 1 5 0.895 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.820 C9 3.674 4 2 5 0.6685 C10 4.069 4 2 5 0.642 C11 4.090 4 2 5 0.642 C4 2.55 3.644 4 2 5 0.663 <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td>					5	
R7 3.910 415 0.695 R8 4.574 415 0.608 R9 3.812 415 0.876 R10 3.336 315 0.926 A1 3.773 415 0.702 A2 3.931 425 0.684 A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.8851 C4 2.635 315 0.985 C5 3.549 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.820 C9 3.674 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C1 4.55 325 0.643 C1 4.55 325 0.693 IB1 3.704 425					ວຼ	
R8 4.574 415 0.608 R9 3.812 415 0.876 R10 3.336 315 0.926 A1 3.773 415 0.702 A2 3.931 425 0.684 A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A82.914315 0.894 C1 3.747 415 0.741 C3 3.133 315 0.881 C4 2.635 315 0.985 C5 3.549 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.768 C10 4.069 425 0.678 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C1 4.55 325 0.693 IIB1 3.704 425 0.675 C16 3.455 325 0.693 IIB1 3.704 425<					5	
R9 3.812 415 0.876 R10 3.336 315 0.926 A1 3.773 415 0.702 A2 3.931 425 0.684 A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.885 C4 2.635 315 0.985 C5 3.549 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.694 C8 3.742 415 0.820 C9 3.674 425 0.678 C11 4.090 425 0.642 C11 4.090 425 0.642 C11 4.090 425 0.663 IB1 3.704 425 0.663 IB2 3.511 315 0.725 IB2 3.511 315<					5	
R10 3.336 3 1 5 0.926 A1 3.773 4 1 5 0.702 A2 3.931 4 2 5 0.684 A3 3.815 4 1 5 0.767 A4 3.575 4 1 5 0.836 A5 3.871 4 2 5 0.694 A6 3.738 4 2 5 0.721 A7 3.142 3 1 5 0.889 A8 2.914 3 1 5 0.894 C1 3.747 4 1 5 0.718 C2 3.532 4 2 5 0.741 C3 3.133 3 1 5 0.985 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.694 C8 3.742 4 1 5 0.694 C8 3.742 4 1 5 0.820 C9 3.674 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.643 C15 3.614 4 2 5 0.693 IIB1 3.704 4 2 5 0.693 IIB2 3.511 3 1 5 0.725 IIB2 3.661 4 2 5 0.681 <tr< td=""><td></td><td></td><td></td><td></td><td>5</td><td></td></tr<>					5	
A1 3.773 415 0.702 A2 3.931 425 0.684 A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.766 C7 3.489 315 0.694 C8 3.742 415 0.694 C8 3.742 415 0.820 C9 3.674 425 0.678 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C15 3.614 425 0.725 IIB2 3.511 315 0.776 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425<						
A2 3.931 425 0.684 A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.766 C7 3.489 315 0.694 C8 3.742 415 0.694 C8 3.742 415 0.820 C9 3.674 425 0.678 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C15 3.614 425 0.725 IIB2 3.511 315 0.708 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681					5	0.926
A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.766 C7 3.489 315 0.694 C8 3.742 415 0.694 C8 3.742 415 0.685 C10 4.069 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C15 3.614 425 0.693 IIB1 3.704 425 0.725 IIB2 3.511 315 0.708 IIB5 3.661 425 0.681 IIB6 3.511 325 0.694	A1	3.773	4		5	
A3 3.815 415 0.767 A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.766 C7 3.489 315 0.694 C8 3.742 415 0.694 C8 3.742 415 0.685 C10 4.069 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C15 3.614 425 0.693 IIB1 3.704 425 0.725 IIB2 3.511 315 0.708 IIB5 3.661 425 0.681 IIB6 3.511 325 0.694	A2	3.931	4	2	5	0.684
A4 3.575 415 0.836 A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.694 C8 3.742 415 0.820 C9 3.674 425 0.678 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C15 3.614 425 0.693 IIB1 3.704 425 0.725 IIB2 3.511 315 0.776 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681	A3	3.815	4	1	5	
A5 3.871 425 0.694 A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.796 C6 3.734 415 0.694 C8 3.742 415 0.694 C8 3.742 415 0.820 C9 3.674 425 0.678 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.643 C15 3.614 425 0.693 IIB1 3.704 425 0.725 IIB2 3.511 315 0.776 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681			4	1	5	
A6 3.738 425 0.721 A7 3.142 315 0.889 A8 2.914 315 0.894 C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.796 C6 3.734 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.820 C9 3.674 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.642 C14 3.807 425 0.643 C15 3.614 425 0.725 IIB1 3.704 425 0.725 IIB2 3.511 315 0.722 IIB4 3.652 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681			4		5	
A7 3.142 3 1 5 0.889 A8 2.914 3 1 5 0.894 C1 3.747 4 1 5 0.718 C2 3.532 4 2 5 0.741 C3 3.133 3 1 5 0.851 C4 2.635 3 1 5 0.985 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.694 C8 3.742 4 1 5 0.694 C8 3.742 4 1 5 0.685 C10 4.069 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.643 C15 3.614 4 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681			4		5	
A8 2.914 3 1 5 0.894 C1 3.747 4 1 5 0.718 C2 3.532 4 2 5 0.741 C3 3.133 3 1 5 0.851 C4 2.635 3 1 5 0.985 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.694 C8 3.742 4 1 5 0.694 C8 3.742 4 1 5 0.685 C10 4.069 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.643 C15 3.614 4 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681			3		5	
C1 3.747 415 0.718 C2 3.532 425 0.741 C3 3.133 315 0.851 C4 2.635 315 0.985 C5 3.549 415 0.796 C6 3.734 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.820 C9 3.674 425 0.685 C10 4.069 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.642 C14 3.807 425 0.643 C15 3.614 425 0.725 IIB1 3.704 425 0.725 IIB2 3.511 315 0.776 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681					5	
C2 3.532 4 2 5 0.741 C3 3.133 3 1 5 0.851 C4 2.635 3 1 5 0.985 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.768 C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.820 C9 3.674 4 2 5 0.685 C10 4.069 4 2 5 0.726 C11 4.090 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.643 C15 3.614 4 2 5 0.750 C16 3.455 3 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.694					5	
C3 3.133 3 1 5 0.851 C4 2.635 3 1 5 0.985 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.768 C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.820 C9 3.674 4 2 5 0.726 C10 4.069 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.642 C14 3.807 4 2 5 0.643 C15 3.614 4 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694					5	
C4 2.635 3 1 5 0.985 C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.768 C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.820 C9 3.674 4 2 5 0.685 C10 4.069 4 2 5 0.726 C11 4.090 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.643 C15 3.614 4 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.776 IIB3 3.751 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694					5	
C5 3.549 4 1 5 0.796 C6 3.734 4 1 5 0.768 C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.820 C9 3.674 4 2 5 0.685 C10 4.069 4 2 5 0.726 C11 4.090 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.642 C14 3.807 4 2 5 0.643 C15 3.614 4 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.776 IIB3 3.751 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694						
C6 3.734 415 0.768 C7 3.489 315 0.694 C8 3.742 415 0.820 C9 3.674 425 0.685 C10 4.069 425 0.726 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.642 C14 3.807 425 0.643 C15 3.614 425 0.750 C16 3.455 325 0.693 IIB1 3.704 425 0.725 IIB2 3.511 315 0.776 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681 IIB6 3.511 325 0.694					5	
C7 3.489 3 1 5 0.694 C8 3.742 4 1 5 0.820 C9 3.674 4 2 5 0.685 C10 4.069 4 2 5 0.726 C11 4.090 4 2 5 0.678 C12 3.785 4 1 5 0.822 C13 3.983 4 2 5 0.642 C14 3.807 4 2 5 0.643 C15 3.614 4 2 5 0.750 C16 3.455 3 2 5 0.693 IIB1 3.704 4 2 5 0.776 IIB2 3.511 3 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.694					5	
C8 3.742 415 0.820 C9 3.674 425 0.685 C10 4.069 425 0.726 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.642 C14 3.807 425 0.643 C15 3.614 425 0.750 C16 3.455 325 0.693 IIB1 3.704 425 0.725 IIB2 3.511 315 0.776 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681 IIB6 3.511 325 0.694					5	
C9 3.674 425 0.685 C10 4.069 425 0.726 C11 4.090 425 0.678 C12 3.785 415 0.822 C13 3.983 425 0.642 C14 3.807 425 0.643 C15 3.614 425 0.750 C16 3.455 325 0.693 IIB1 3.704 425 0.725 IIB2 3.511 315 0.776 IIB3 3.751 415 0.722 IIB4 3.652 415 0.708 IIB5 3.661 425 0.681 IIB6 3.511 325 0.694					ົ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5	
C114.0904250.678C123.7854150.822C133.9834250.642C143.8074250.643C153.6144250.750C163.4553250.693IIB13.7044250.725IIB23.5113150.776IIB33.7514150.722IIB43.6524150.708IIB53.6614250.681IIB63.5113250.694				2	5	
C123.7854150.822C133.9834250.642C143.8074250.643C153.6144250.750C163.4553250.693IIB13.7044250.725IIB23.5113150.776IIB33.7514150.722IIB43.6524150.708IIB53.6614250.681IIB63.5113250.694			-			
C13 3.983 4 2 5 0.642 C14 3.807 4 2 5 0.643 C15 3.614 4 2 5 0.750 C16 3.455 3 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.776 IIB3 3.751 4 1 5 0.708 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694					5	
C143.8074250.643C153.6144250.750C163.4553250.693IIB13.7044250.725IIB23.5113150.776IIB33.7514150.722IIB43.6524150.708IIB53.6614250.681IIB63.5113250.694		3.785			5	0.822
C14 3.807 4 2 5 0.643 C15 3.614 4 2 5 0.750 C16 3.455 3 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.776 IIB3 3.751 4 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694	C13	3.983	4	2	5	0.642
C16 3.455 3 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.776 IIB3 3.751 4 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694	C14	3.807	4	2	5	0.643
C16 3.455 3 2 5 0.693 IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.776 IIB3 3.751 4 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694	C15	3.614	4	2	5	0.750
IIB1 3.704 4 2 5 0.725 IIB2 3.511 3 1 5 0.776 IIB3 3.751 4 1 5 0.722 IIB4 3.652 4 1 5 0.708 IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694	C16	3.455	3	2	5	0.693
IIB33.7514150.722IIB43.6524150.708IIB53.6614250.681IIB63.5113250.694					5	
IIB33.7514150.722IIB43.6524150.708IIB53.6614250.681IIB63.5113250.694					5	
IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694						
IIB5 3.661 4 2 5 0.681 IIB6 3.511 3 2 5 0.694					5	
IIB6 3.511 3 2 5 0.694					5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5	
	IIB0 IIB7	3.888	4	1	5	0.094

Indicator Reliability

Testing indicator reliability is determined based on the value loadings of each indicator. The value loadings of the indicator must be higher than 0.7, where the value indicates that the construct can explain more than 50% of the variance indicators. A reflective indicator that has a smaller value than 0.700 was eliminated from model. This showed that the indicator was not valid, so that it needed to test again. The test process was done many times till all values of the loading indicator were higher than 0.700. Generally, the outer values loading had by each indicator in construct can be seen in the initial estimation model Figure 3. The value of outer loading, which is less than 0.7, will be measured again till the value of outer loading reaches 0.7.

Test of Convergent Validity

Convergent validity from the model is determined based on the value of Average Variance Extracted (AVE). AVE's value was higher than 0.500, indicating that the mean of the construct was able to explain more than 50% of variant indicators. The data obtained from the previous measurement were in Table 9.

Table 9. The Value of AVE in the Modified Mod	Table 9.	The V	/alue of	AV.	E in tl	he Mod	lified N	/lode
---	----------	-------	----------	-----	---------	--------	----------	-------

	(AVE)
Abilities	0.596
Digital Talent	0.52
Hard	0.703
Individual innovation behavior	0.627
Role	0.588
Skill	0.611
Skills Revolution Industry 4.0	0.50
Soft	0.615

Discriminant Validity

Discriminant validity is a test for the typicality of each construct in a measurement model. The discriminant validity model is done by comparing the values of indicators' loading and cross-loading value. The comparison can be seen in Table 10.

Table10. Final Estimation

	Abilities	Hard	IIB	Role	s	Soft
A1	0.757	0.262	0.393	0.281	0.445	0.385
A2	0.844	0.345	0.507	0.35	0.509	0.447
A3	0.759	0.327	0.495	0.328	0.412	0.38
A6	0.724	0.227	0.477	0.25	0.477	0.457
B1	0.515	0.284	0.763	0.368	0.48	0.347
B4	0.478	0.257	0.850	0.29	0.431	0.386
B5	0.474	0.254	0.800	0.314	0.444	0.412
B6	0.443	0.196	0.749	0.251	0.366	0.288
C5	0.475	0.318	0.395	0.229	0.782	0.289
C6	0.377	0.287	0.356	0.257	0.751	0.277
C7	0.514	0.287	0.513	0.328	0.829	0.451
C8	0.484	0.304	0.43	0.254	0.761	0.423
H3	0.386	0.815	0.304	0.521	0.333	0.356
H4	0.309	0.884	0.264	0.482	0.337	0.317
Н5	0.236	0.815	0.218	0.413	0.283	0.226
R10	0.394	0.441	0.317	0.73	0.385	0.243
R4	0.275	0.515	0.281	0.757	0.213	0.239
R5	0.367	0.435	0.365	0.824	0.209	0.247
R6	0.257	0.348	0.328	0.773	0.255	0.217
R7	0.209	0.437	0.202	0.745	0.261	0.211
S3	0.451	0.268	0.356	0.264	0.409	0.803
S4	0.381	0.296	0.301	0.17	0.344	0.798
S 5	0.399	0.284	0.329	0.153	0.285	0.745
S6	0.448	0.296	0.414	0.315	0.403	0.790

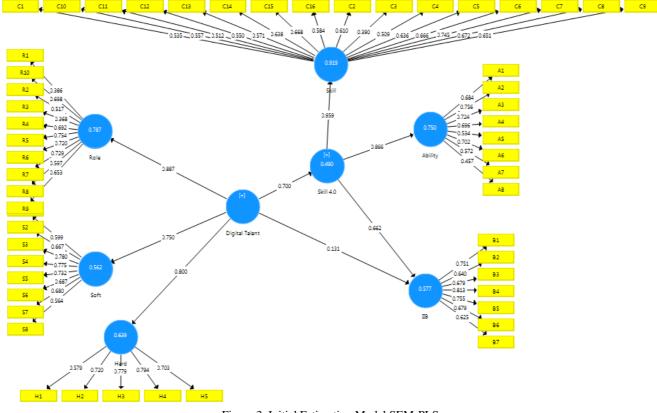


Figure 3. Initial Estimation Model SEM-PLS

Internal Consistency Reliability

Internal consistency reliability is determined based on the value of composite reliability. Table 3 shows that the value of composite reliability is higher than 0.7 for each construct. This shows that the variable used in model can be handle in testing hypotheses. In other words, all constructs or research constructs have become the fit measuring device, and all questions used to measure each variable have good reliability. The value of composite reliability can be seen in Table 11.

Table 11. Composite Reliability

	Composite Reliability
Ability	0.855
Digital Talent	0.883
Hard	0.877
IIB	0.87
Role	0.877
Skill	0.862
Skill of Revolution Industry	0.875

Table 11 shows that the calculation result of total respondent data, which have values for composite reliability with values higher than 0.7. This means that the construct applied in this model to measure reliability can be acceptable and reliable in testing hypotheses. The process of elimination was done in 13 time, resulting the valid model. The eliminated constructs were R3, R1, R2, R8, R9, S1, S2, S7, S8, C1, C2, C3, C4, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, A4, A5, A7, A8, B2, B3, B7. The final model is seen in Figure 4.

Inner Model

From the testing of the outer model, in this case, the research model is reflective and has a dimension in the construct of digital talent and Skills Revolution Industry 4.0, so this research has a second option to see inner model evaluation, seen in Figure 5. Inner model evaluation starts from the calculation:

Test of Path Coefficient in the Output of PLS.

Path coefficient is obtained after doing bootstrapping from software Smart-PLS 3.8.2. The evaluation of the structural model can be seen in the original sample (O) existing in the path coefficient's output. If the original sample is positive (+), then there has been a positive relation; instead, if the original sample is negative (-), there has been a negative relation. The value of the original sample can be seen in Table 12.

Table 12. The Value of Original Sample

	Original Sample (O)
Digital Talent → Individual Innovation Behavior	0.178
Digital Talent \rightarrow Skills Revolution Industry 4.0	0.615
Skills Revolution Industry 4.0 \rightarrow Individual Innovation Behavior	0.538

The original sample between digital talent and individual innovation behavior had value 0.178, means that they were positively influenced. Digital talent and skills of revolution industry 4.0 influenced positively with the value of the original sample 0.615. Skills of revolution industry 4.0 with individual innovation behavior also were positively influenced.

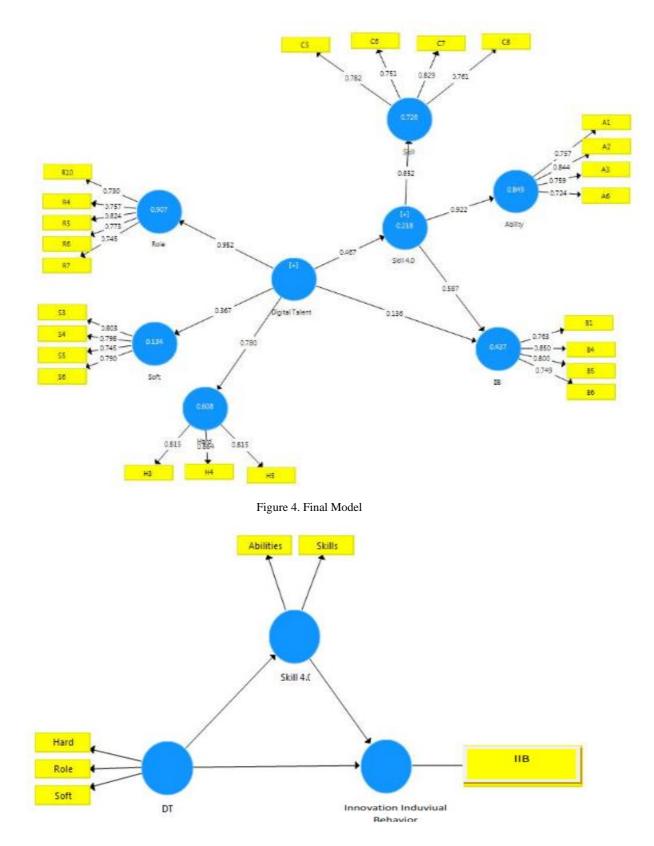


Figure 5. Model of Second Order

Test of Hypotheses

The research hypothesis can be accepted if the obtained tstatistics value is more than compared to the t-table value (tstatistics > t-table value). The test of hypotheses is done using alpha (α) = 5%, so this research's t-table value is 1.96. The value of such alpha states that the tolerance threshold that can be accepted is 5% (0.50). Besides, the test of hypotheses can be seen in the p-value existing in the output path coefficient. P-value in the level of significance $\alpha = 5\%$ or 0.05. To answer hypotheses, the used value is p-value < 0.05. To sum up, if the hypotheses are accepted or rejected, then the p-value used is in the level of

significance $\alpha = 5$ % or 0.05. If p-value < 0.05, then H0 is rejected, meaning there is a significant effect on the construct. Instead, if p-value > 0.05, then H0 is accepted; in other words, there is no significant effect on the construct. The value of t-statistics and p-value in the total respondent's data can be seen in Table 13.

Table 13. The Value of Test of Hypotheses of Total Respondents' Data

	P- values
Digital Talent \rightarrow Individual Innovation Behavior	0.004
Digital Talent \rightarrow Skills Revolution Industry 4.0	0.000
Skills Revolution Industry $4.0 \rightarrow$ Individual Innovation Behavior	0.000

P-value shows that all hypotheses are accepted and have a significant effect (if p-value > 0.05).

- The result of the p-value between digital talent and individual innovation behavior is 0.004 < 0.05.
- The p-value between digital talent and Revolution Industry 4.0 is 0.00 < 0.05.
- The p-value between Revolution Industry 4.0 and individual innovation behavior is 0.00 < 0.

Test of hypotheses for effect digital talent on individual innovation s with Revolution Industry 4.0 as mediator construct. The calculation of mediation construct is done by the Sobel test by using the Sobel test calculator online, as seen in Figure 6.

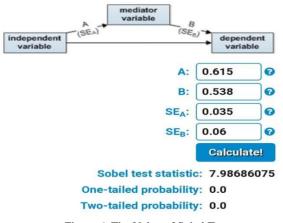


Figure 6. The Value of Sobel Test

Figure 6 shows that the Sobel test's value is 7.98686075, meaning Skills Revolution Industry 4.0 are constructs that can mediate digital talent with individual innovation behavior. Requirement of the value of mediation model is the value of z-statistics > 1.96 (z-table).

Determinant Coefficient/R-square

Determinant coefficient/R-square (R^2) is a measurement used to calculate a model's prediction accuracy and seek construct capability in percentage. The higher value of R^2 demonstrates a good model. The value of R-square can be seen in Table 14.

This study's structural model or inner model can be identified by looking at the value of R^2 . The R^2 states that the number of variants percentage of each latent construct. The value of R^2 is obtained by using software Smart PLS 3, in amount is 0.438. It means construct variability of individual innovation behavior

DOI: 10.25077/josi.v19.n2.p133-143.2020

obtained from digital talent construct and its interaction 43.8%, and evaluation of R^2 for is 37.9%. The R^2 value in construct innovation behavior and Skills Revolution Industry 4.0 is < 5.00. It means a critical value for the level of prediction accuracy is medium.

	R ²
Individual innovation behavior	0.438
Skills Revolution Industry 4.0	0.379

Cross-validated Redundancy (Q^2)

Cross-validated redundancy (Q^2) is a measurement of model's predictive relevance, in which the value of $Q^2 > 0$ indicating that endogen construct can be predicted by exogen construct. The values of Q^2 can be seen in Table 15. It can be seen that the value of Q^2 for each construct is more than zero, indicating that the behavior and Skills Revolution Industry 4.0 can be predicted.

Table15. The value of Cross-validated Redundancy (Q²)

	Q^2
Individual innovation behavior	0.423
Skills Revolution Industry 4.0	0.286

Overall, based on the research result, construct digital gave positive and significant effect to construct Skills Revolution Industry 4.0 directly. Then, the accuracy prediction was not still weak, yet it did not influence the quality. Construct digital talent and construct individual innovation behavior also gave a positive and significant effect. This happened since there was a construct mediator. The construct mediator is a construct becoming a mediator for the free construct's relation with the bound construct. In this research, the free construct is digital talent, the bound construct is individual innovation behavior, and the construct mediator is the skills revolution industry 4.0. The more digital talent influences, the more individual innovation behavior will be gotten by someone with any help of skills mastery.

CONCLUSIONS

The result of the study shows that digital talent has a positive relation to Skills Revolution Industry 4.0. The majority of innovation behavior indicators are comfortable with ambiguity, customer-centricity, entrepreneurial mindset, data-driven decision-making, cloud computing, search engine optimization, web development, chief internet of things officer, data architect, data engineer, and data scientist. In Skills Revolution Industry 4.0 construct, produced indicators are Skills Revolution Industry 4.0 critical thinking, monitoring, complex problem solving, leadership, analytical thinking, creativity, initiative, and responsibility. In the construct of individual innovation behavior, produced indicators explore a new opportunity, champion new ideas, new idea implementation, and problem-solving ability. The relationship of digital talent with individual innovation behavior is affected by the construct of Skills Revolution Industry 4.0 as a mediator. The result of this study, the construct of Skills Revolution Industry 4.0, can mediate the relationship of digital talent with individual innovation behavior.

This study's built-up model can describe the relationship between digital talent construct with skills 4.0, the digital talent on innovation behavior, and mediation relationship between digital talent with individual innovation behavior by using the construct of skills 4.0 as mediator. The prediction accuracy of that relationship is categorized as inferior. Therefore, researchers can recommend further research in the light of wider scopes, such as the number of respondents, number of constructs, and the research and case study's location to minimalize such weaknesses.

The development of industry revolution 4.0 is increasing rapidly. The demands of mastering, digital competence, skills, and innovation will last permanently. Revolution development is also referred to as the needs of human resources in the world, which is entirely digital. In this study, the built-model can describe the students' competence as individual job seekers in the future. The competence of digitalization or technology requires the mastery of digital talent.

The mastery of digital talent is about using digital devices and managing and building up new technology. Digital talent, which positively influences Skills Revolution Industry 4.0, is a supporting factor in taking and deciding to use technology. Skills Revolution Industry can become a catalisator for accelerating the establishment of technology innovation. The roles of digital talent and individual innovation behavior are connected to Skills Revolution Industry 4.0.

REFERENCES

- A. Benesova and j. Tupa, "Requirements for Education and Qualification of People in Industry 4.0," Elsevier, Procedia Manuf., vol. 11, no. June, pp. 2195–2202, 2017, https://doi.org/10.1016/j.promfg.2017.07.366.
- [2] N. R. Anderson, K. Potočnik, and J. Zhou, "Innovation and Creativity in Organizations: A State-of-the-Science Review, Prospective Commentary, and Guiding Framework. Journal of Management June, 2014. https://doi.org/10.1177/0149206314527128.
- [3] G. T. Kefela, "Knowledge-Based Economy and Society Has Become a Vital Commodity to Countries," IJERT Int. J. Educ. Res. Technol., vol. 1, no. 12, pp. 68–75, 2010.
- [4] https://doi.org/10.5897/INGOJ.9000069.
- [5] S. G. Scott and R. A. Bruce, "Determinants of Innovative Behavior: A Path Model of Individual Innovation in the Workplace," Acad. Manag. J., vol. 37, no. 3, pp. 580–607, 1994, https://doi.org/10.5465/256701.
- [6] O. Janssen, "Job demands, perceptions of effort-reward fairness and innovative work behaviour," J. Occup. Organ. Psychol., vol. 73, no. 3, pp. 287–302, 2000, https://doi.org/10.1348/096317900167038.
- [7] B. Lanvin and P. Passman, 2007. Building E-skills for the Information Age. Global Information Technology Report, 2008, pp.77-90.
- [8] J. Posada et al., "Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet," IEEE Comput. Graph. Appl., vol. 35, no. 2, pp. 26–40, 2015, https://doi.org/10.1109/MCG.2015.45.

- [9] L. Prifti, M. Knigge, H. Kienegger, and H. Krcmar, "A Competency Model for ' Industrie 4 . 0 ' Employees," pp. 46–60,2017 https://aisel.aisnet.org/. [Accessed: 23 October 2019].
- [10] M. Baygin, H. Yettis, M. Karakose, and E. Akin, "An effect of industry of industry 4.0 to higher education," in proc. Of 2016 15 st Int.Conf. on Information Technology Based Higher Education and Training (ITHET), 8-10 September 2016, Istanbul, Turkey [Online]. Avaiblable: IEEE Xplore, http://www.ieee.org. [Accessed: 23 October 2019]. https://doi.org/10.1109/ITHET.2016.7760744.
- M. Ahmad et al., "The application of 21st century ict literacy model among teacher trainees," Turkish Online J. Educ. Technol., vol. 15, no. 3, pp. 151–161, Juli 2016. https://eric.ed.gov/?id [Accessed: 23 October 2019].
- Jong, J.D and Hartog, D.D, "Measuring Innovative Work Behaviour," Creativity and Innovation Management Volume 19, Issue 1, February, 2010. https://doi.org/10.1111/j.1467-8691.2010.00547.x.
- [13] S. Nicol, "Modelling Information Literacy For Classrom Of The Future," J. Librariansh Inf.Sci Vol 47 No 4, pp. 303-313, 2015. March 2014 https://journals.sagepub.com.
- [14] https://doi.org/10.1177/0961000614526612.
- [15] K. Schwab, "The Future Job 2018," Geneva: World Economic Forum, 2018.
- [16] J. Manyika et al., "A Future That Works: Automation, Employment, And Productivity," McKinsey Global Institute (MGI), January, 2017.
- [17] C. H. Wu, S. K. Parker, and J. P. J. de Jong, "Need for Cognition as an Antecedent of Individual Innovation Behavior;" Sage Journals, Southern Management Association, 2014. https://doi.org/10.1177/0149206311429862.
- [18] The Capgemini, linkedIn "The Digital Talent Gap -Summary," p. 40, 2017. https://www.capgemini.com [Acessed: March-2019].
- [19] De Jong, P. J. Jeroen, and Deanne N. Den Hartog. "How Leaders Influence Employees' Innovative Behaviour." European Journal of Innovation Management 2007.
 https://doi.org/10.1108/14601060710720546

https://doi.org/10.1108/14601060710720546.

- [20] I. Kamil and B. Yuliandra, "Studi Pengaruh Perilaku Inovasi Individu Terhadap Kemampuan Technopreneurship Mahasiswa," Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VII, 2017.
- [21] K. Schwab, "The Fourth Industrial Revolution," Geneva: World Economic Forum, 2016.World Economic Forum ebook.
- [22] J. F. Hair et al., "Partial Least Squares Structural Equation Modeling (PLS-SEM); an emerging tool in business research.vol. 26, no. 2. https://doi.org/10.1108/EBR-10-2013-0128.
- [23] J. F. Hair et al., "A Primer on Partial Least Squares Structural Equation Modeling (Pls-Sem)," California.
 2014. Sage Publications, Inc e-book. https://doi.org/10.1108/EBR-10-2013-0128.
- [24] Sugiyono. Metode Penelitian Administratif, Bandung;Alfabeta. 2010.
- [25] C. M. Ringle et al., "Partial Least Squares Structural Equation Modeling in HRM research," Informa UK

Limited, trading as Taylor & Francis Group, 2018. https://doi.org/10.1080/09585192.2017.1416655.

 [26] S. Thanuskodi, "Gender Differences in Internet Usage among College Students: A Comparative Study" (2013).
Library Philosophy and Practice (e-journal). 1052.
http://digitalcommons.unl.edu/libphilprac/1052.

NOMENCLATURE

А	Ability
---	---------

- C Skill of Revolusi 4.0
- IIB Individual Innovation Behavior
- DT Readiness
- X Total Each Sample Faculty
- N Number of Sample
- P Number of Population
- S The Amount of Faculty
- AVE Average Variance Extracted
- R² Coefficient of Determination
- f² Effect Size
- Q² Cross-Validated Redundancy
- O Original Sample