Model Optimasi Perancangan Jaringan Rantai Pasok Biomassa dari Tandan Kosong Kelapa Sawit di Sumatera Barat

  Author(s)
Febriza Imansuri   
Rika Ampuh Hadiguna (Universitas Andalas - Indonesia)
Feri Afrinaldi (Universitas Andalas - Indonesia)

 ) Corresponding Author
Copyright (c) 2019 Febriza Imansuri, Rika Ampuh Hadiguna, Feri Afrinaldi
  Abstract
West Sumatra has great potential in developing biomass based on palm oil waste. This is because the largest plantation production in West Sumatra comes from the oil palm commodity of 1,082,820 tons in 2014. Therefore, it is necessary to design a model of supply chain biomass network for the distribution of Empty Fruit Bunches (EFB) from CPO factory suppliers located in West Sumatra and distributed to Depot Pertamina Teluk Kabung. Stages performed in the implementation of this study began with a preliminary study to determine the potential of biomass in West Sumatra. Furthermore, the design of chain supply chain optimization model by identifying supply chain activity, knowing the characteristics of supply chain system and make the formulation of mathematical model. The design of supply chain biomass from Empty Fruit Bunches (EFB) in West Sumatera, starting from raw material Tandan Kosong Kelapa Sawit (TKKS) sourced from Crude Palm Oil (CPO) factory in West Pasaman Regency and surrounding. This is because Pasaman Barat Regency is the central agroindustry of oil palm plantation which has 17 most palm oil factories in West Sumatra. The potential of bioethanol derived from CPO waste can be done by establishing bioethanol plant located with the same CPO factory so that it is adjacent to the source of the raw material. The result of the mathematical model mixed integer linear programming is placement of bioethanol plant location at PT Pasaman Marama Sejahtera with medium scale and total cost of IDR 251,563,700,000.00.
  Keywords
rantai pasok; biomassa; tandan kosong kelapa sawit (TKKS); Mixed Integer Linier Programming
  Click to Read the Full Text
PDF
  References

[1] M. dan P. Direktorat Sumber Daya Energi, “Policy Paper Keselarasan Kebijakan Energi Nasional (KEN) dengan Rencana Umum Energi Nasional (RUEN) dan Rencana Umum Energi Daerah (RUED),” Jakarta, 2012.

[2] P. P. R. Indonesia, “Undang-Undang Nomor 05 Tahun 2006 tentang Kebijakan Energi Nasional,” pp. 1–5, 2006.

[3] T. J. I. of Energy, Buku Panduan Biomassa Asia Panduan untuk Produksi dan Pemanfaatan Biomassa. Jakarta: Kementrian Pertanian, Kehutanan dan Perikanan, 2008.

[4] B. P. Prastowo and Bambang, “Gasifikasi TKKS: Konversi Limbah TKKS untuk Sumber Energi Terbarukan,” in Prosiding Seminar Nasional Inovasi Perkebunan, 2011, pp. 196–205.

[5] Departemen Perindustrian, Gambaran Sekilas Industri Minyak Kelapa Sawit. Jakarta: Pusat Data & Informasi, 2007.

[6] N. I. L. U. H. Arpiwi, S. Si, and M. Sc, “Diktat Kuliah Bioenergi: Biodiesel Dan Bioetanol,” Universitas Udayana, 2015.

[7] Y. Sudiyani et al., “Utilization of Biomass Waste Empty Fruit Bunch Fiber of Palm Oil for Bioethanol Production Using Pilot – Scale Unit Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot – scale unit,” Energy Procedia, vol. 32, pp. 31–38, 2013. https://doi.org/10.1016/j.egypro.2013.05.005.

[8] D. P. K. P. Barat, “Data Pabrik Kelapa Sawit,” 2015.

[9] S. M. Nur and J. Jusuf, Biomassa Bahan Baku & Teknologi Konversi untuk Energi Terbarukan, Sangatta and Bogor: Kajian Pustaka dan Gagasan Aplikasi di Indonesia, 2014.

[10] S. Chhopra and P. Meindl, Supply Chain Management, 3rd ed. New Jersey: Pearson, 2007.

[11] G. J. Lieberman and F. S. Hillier, Introduction to Operational Research, 7th ed. New York: McGraw Hill International Editions, 2001.

[12] S. D. Eksioglu, A. Acharya, L. E. Leightley, and S. Arora, “Analyzing the design and management of biomass-to-biorefinery supply chain,” Comput. Ind. Eng., vol. 57, pp. 1342–1352, 2009. https://doi.org/10.1016/j.cie.2009.07.003.

[13] D. Vera, J. Carabias, F. Jurado, and N. Ruiz-reyes, “A Honey Bee Foraging approach for optimal location of a biomass power plant,” Appl. Energy, vol. 87, no. 7, pp. 2119–2127, 2010. https://doi.org/10.1016/j.apenergy.2010.01.015.

[14] L. Čuček, P. S. Varbanov, J. J. Klemeš, and Z. Kravanja, “Total footprints-based multi-criteria optimisation of regional biomass energy supply chains,” Energy 44, pp. 135–145, 2012. https://doi.org/10.1016/j.energy.2012.01.040.

[15] J. Kim, M. J. Realff, and J. H. Lee, “Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty,” Comput. Chem. Eng., vol. 35, no. 9, pp. 1738–1751, 2011. https://doi.org/10.1016/j.compchemeng.2011.02.008.

[16] W. A. Marvin, L. D. Schmidt, S. Benjaafar, D. G. Tiffany, and P. Daoutidis, “Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain,” Chem. Eng. Sci., vol. 67, no. 1, pp. 68–79, 2012. https://doi.org/10.1016/j.ces.2011.05.055.

[17] L. Zhang and G. Hu, “Supply chain design and operational planning models for biomass to drop-in fuel production,” Biomass and Bioenergy, vol. 58, pp. 238–250, 2013. https://doi.org/10.1016/j.biombioe.2013.08.016.

[18] B. Sharma, R. G. Ingalls, C. L. Jones, R. L. Huhnke, and A. Khanchi, “Bioresource Technology Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system,” Bioresour. Technol., vol. 150, pp. 163–171, 2013. https://doi.org/10.1016/j.biortech.2013.09.120.

[19] A. Bernardi, S. Giarola, and F. Bezzo, “Spatially Explicit Multiobjective Optimization for the Strategic Design of First and Second Generation Biore fi neries Including Carbon and Water Footprints,” J. Ind. Eng. Chem. Res., vol. 52, pp. 7170–7180, 2013. https://doi.org/10.1021/ie302442j.

[20] H. Paulo, A. P. F. D. Barbosa-póvoa, and S. Relvas, “Energy from Lignocellulosic Biomass : Supply Chain Modeling to Maximize Net Energy Production,” 24 Eur. Symp. Comput. Aided Process Eng., vol. 33, no. 2007, pp. 481–486, 2014. https://doi.org/10.1016/B978-0-444-63456-6.50081-8.

[21] E. Grigoroudis, K. Petridis, and G. Arabatzis, “RDEA : A recursive DEA based algorithm for the optimal design of biomass supply chain networks,” Renew. Energy, vol. 71, pp. 113–122, 2014. https://doi.org/10.1016/j.renene.2014.05.001.

[22] S. Roni, S. D. Eksioglu, E. Searcy, and K. Jha, “A supply chain network design model for biomass co-firing in coal-fired power plants,” Transp. Res. PART E, vol. 61, pp. 115–134, 2014. https://doi.org/10.1016/j.tre.2013.10.007.

[23] S. Mohseni, M. S. Pishvaee, and H. Sahebi, “Robust design and planning of microalgae biomass-to-biodiesel supply chain : A case study in Iran,” Energy, vol. 111, pp. 736–755, 2016. https://doi.org/10.1016/j.energy.2016.06.025.

[24] Jonrinaldi, R. A. Hadiguna, and R. Salastino, “A Mixed Integer Linear Programming Model for Operational Planning of A Biodiesel Supply Chain Network from Used Cooking Oil,” in AIP Conference Proceedings, 2017. https://doi.org/10.1063/1.5010623.

[25] N. Kazemzadeh, “Optimization Models for Biorefinery Supply Chain Network Design under Uncertainty,” Iowa State University, 2013. https://doi.org/10.1063/1.4822255.

[26] A. Pratiwi, “Faktor-Faktor Mempengaruhi Pemilihan Lokasi Terhadap Kesuksesan Usaha Jasa ( Studi Pada Usaha Jasa Mikro Mikro-Kecil Kecil Di Sekitar Kampus Undip Pleburan),” Universitas Diponegoro, 2010.

[27] M. Haque and F. M. Epplin, “Cost to produce switchgrass and cost to produce ethanol from switchgrass for several levels of biorefinery investment cost and biomass to ethanol conversion rates,” Biomass and Bioenergy, vol. 46, no. Table 1, pp. 517–530, 2012. https://doi.org/10.1016/j.biombioe.2012.07.008.

[28] K. P. Barat, “Produksi kelapa sawit pasaman barat,” Pasaman Barat, 2016.

[29] D. P. K. P. Barat, “Data Pabrik Kelapa Sawit,” Kabupaten Pasaman Barat, 2015.

StatisticsArticle Metrics

This article has been read : 436 times
PDF file viewed/downloaded : 286 times

This article can be traced from





Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.