Model Kebijakan Perkebunan Nilam di Pasaman Barat dengan Pendekatan Sistem Dinamis

  Author(s)
Dina Rahmayanti    (Teknik Industri - Indonesia)
Rika Ampuh Hadiguna (Universitas Andalas - Indonesia)
Santosa Santosa (Universitas Andalas - Indonesia)
Novizar Nazir (Universitas Andalas - Indonesia)

 ) Corresponding Author
Copyright (c) 2019 dina rahmayanti
  Abstract

This study aims to design a model by providing several policy alternatives that are useful to assist the government in determining appropriate policies in increasing patchouli oil production from the supply aspect. The supply to be studied is patchouli plantations. The plantation is one of the important aspects affecting patchouli oil production. The choice of alternatives is based on testing alternative policies on a computerized model. Patchouli plantation models are made in line with real systems using system dynamics. From the results of the study, there are several policy alternatives that can be taken by the government, policies related to land expansion and conversion, policies related to increasing agricultural production, policies related to human resource improvement, policies related to agricultural equipment assistance and policies related to the use of superior seeds in plantations.

  Keywords
system dynamic; policies; patchouli oil
  Click to Read the Full Text
PDF
  References

[1] M. K. Swamy and U. R. Sinniah. “Patchouli (Pogostemon cablin Benth): Botany, agrotechnology and biotechnological aspects”. Industrial Crops and Products, vol. 87, pp. 161–176, 2016. https://doi.org/10.1016/j.indcrop.2016.04.032.

[2] H. S. Kusuma and M. Mahfud, “Microwave Hydrodistillation For Extraction of Essential Oil From Pogostemon Cablin Sbenth: Analysis And Modelling Of Extraction Kinetics”.Journal of Applied Research on Medicinal and Aromatic Plants, vol. 4, pp. 46–54, Mar. 2017. https://doi.org/10.1016/j.jarmap.2016.08.001.

[3] Z. Bey, et al. “Essential oils composition, antibacterial and antioxidant activities of hydro distillated extract of Eucalyptus globulus fruits”. Industrial Crops and Products, vol 89, pp 167–175, 2016. https://doi.org/10.1016/j.indcrop.2016.05.018.

[4] D. Rahmayanti, R. A Hadiguna, Santosa, and N. Nazir. “Model Konseptual Pengembangan Agroindustri Minyak Nilam di Pasaman Barat Menggunakan Sistem Dinamik”. Industria: Jurnal Teknologi dan Manajemen Agroindustri, vol 6(3), 126-132, 2017. https://doi.org/10.21776/ub.industria.2017.006.03.3.

[5] M. T. J. Hardian, M. Antara, and Hadayani. “Analisis Produksi Nilam dan Nilai Tambah Penyulingan Minyak Atsiri di Kabupaten Banawa Selatan, Kabupaten Donggala. Tadulako”. Journal of Science and Technology 4(2):68-78, 2015.

[6] B. Gotama and Mahfud. “studi peningkatan nilai tambah produk minyak nilam”. Seminar Nasional Pendidikan Kimia, Seminar V1 ISBN: 979363174, 2014.

[7] A. Junaedi and A. Hidayat. “Uji asal sumber benih nilam (pogostemon cablin benth) di Pasaman Barat, Sumatera Barat”. Journal of Forest Product Research 28(3), 241–254, 2010. https://doi.org/10.20886/jphh.2010.28.3.241-254.

[8] Nurhilal and S. H. Saruman. “Penilaian Penyerapan Tenaga Kerja di Industri Kecil Minyak Nilam”, 2013.

[9] C. Winarti, M. P. Laksmanahardja, and D. Sumangat. “Studi status pengembangan tingkat kepuasan petani agroindustri minyak nilam di Majalengka”. J.Pascapanen 2 (2), 36-44, 2005.

[10] Badan Pusat Statistik. Statistik Indonesia 2015. Jakarta: Badan Pusat Statistik.

[11] Badan Pusat Statistik. Statistik Indonesia 2018. Jakarta: Badan Pusat Statistik

[12] Direktorat Jenderal Perkebunan. Statistik Perkebunan Indonesia Komoditas Nilam 2015-2017. Jakarta: Kementerian Pertanian.

[13] D. Wijaya. Perencanaan Produksi Menggunakan Teknik Simulasi Dinamis(Studi Kasus Pt.Agro Palindo Sakti Sumatera Selatan). Tugas Akhir. Fakultas Teknik Program Studi Teknik Industri. Universitas Bina Darma Palembang.

[14] Y. Tian, K. Govindan, and Q. Zhu. “A system dynamics model based on evolutionary game theory for green supply chain management diffusion among Chinese manufacturers”. Journal of Cleaner Production, vol. 80, pp. 96-105, 2014. https://doi.org/10.1016/j.jclepro.2014.05.076.

[15] R. L. Poor and M. Amiri. Expert Systems With Applications, vol. 51, pp. 231–244. 2016. https://doi.org/10.1016/j.eswa.2015.12.043.

[16] B. Y. Ariadi, K. M Haeruman, D. Rochdiani, and E. Rasmikayati. “Model dinamik manajemen usahatani ubikayu”. AGRARIS: Journal of Agribusiness and Rural Development Research, vol. 1(1), pp.25–31, 2015. https://doi.org/10.18196/agr.114.

[17] D. M. Rahmah, F. Rizal, and A. Bunyamin. “Model dinamis produksi jagung di Indonesia”. Jurnal Teknotan, vol. 11(1), pp.30–40, 2017. https://doi.org/10.24198/jt.vol11n1.4.

[18] J. O. Ferreira, M. O. Batalha, and J. C. Domingos. “Integrated planning model for citrus agribusiness system using systems dynamics”. Computers and Electronics in Agriculture, vol. 126, pp.1–11, 2016. https://doi.org/10.1016/j.compag.2016.04.029.

[19] Sterman, John. D. Business Dynamics Systems Thinking and Modeling for a Complex World. McGraw-Hill Companie,Inc., 2000.

[20] A. Chapman and S. Darby. “Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta’s An Giang Province, Vietnam”. Science of the Total Environment, vol. 559, pp. 326–338, 2016. https://doi.org/10.1016/j.scitotenv.2016.02.162.

[21] D. Rahmayanti, R. A Hadiguna, Santosa, and N. Nazir. Dinamika Sistem Pendapatan Petani dan Produksi Minyak Nilam. In Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9 (pp. 18–19). Pekanbaru: Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau, 2017.

[22] P. Papilo dan H. Hartrisari. “Simulasi model matematik dampak penerapan kebijakan mandatori blending biodiesel–solar terhadap kebutuhan lahan perkebunan kelapa sawit dan tingkat emisi CO2”. Journal of Industrial Engineering & Management Systems, vol. 9, no 2, August 2016. https://doi.org/10.30813/jiems.v9i2.44.

[23] A. M Hasibuan and A. L. N. Sayekti. Model simulasi pemanfaatan empat komoditas perkebunan sebagai sumber bahan baku biodiesel untuk pemenuhan target konsumsi biodiesel nasional. SIRINOV, vol. 1, no 1, pp. 21-30, April 2013.

[24] K. H. Widodo, H. Abdullah, and K. P. Dwi. Jurnal Teknik Industri, vol. 12(1) , pp. 47−54, ISSN 1411-2485, Juni 2010.

[25] A. B. Putra and B. Nugroho. “Peramalan Produksi Kedelai Menggunakan Pendekatan Sistem Dinamik”. Jurnal Sistem Informasi Dan Bisnis Cerdas (SIBC), vol. 9(1). Februari 2016.

[26] E. Teimoury, H. Nedaei, S. Ansari, and M. Sabbaghi. “A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: A system dynamics approach”. Computers and Electronics in Agriculture, 93, 37–45, 2013. https://doi.org/10.1016/j.compag.2013.01.010.

[27] A. Mahbubi. “Rantai Pasok Industrialisasi Gula Berkelanjutan di Pulau Madura Sistem Dinamis”. Agriekonomika, ISSN 2301-9948-ISSN 2407-6260, vol. 4( 2), 2015.

[28] S. N Arimurti and E. Suryani. “Penerapan Sistem Dinamik Untuk Meningkatkan Efektivitas dan Efisiensi Pada Manajemen Rantai Pasok Terhadap Ketersediaan Beras dan Gula di Subdivre 1 Jawa Timur Surabaya, Sidoarjo dan Gresik. Jurnal Teknik Pomits, vol. 1(1), 2014.

[29] M. A. Ghiffari, B. H. Purnomo, and N. Novijanto.“Model Sistem Dinamis Penilaian Kinerja Agroindustri Tembakau Di Pt Gading Mas Indonesia Tobacco”. Jurnal Agroteknologi, vol. 10(1), 2016.

[30] B. Wardono and B. P. Utomo.’Rancang Bangun Kebijakan Pengembangn Budidaya Lele melalui Pendekatan Model Dinamik”. Jurnal Kebijakan Sosek KP, vol. 3(2), 2013. https://doi.org/10.15578/jksekp.v3i2.322.

StatisticsArticle Metrics

This article has been read : 145 times
PDF file viewed/downloaded : 64 times

This article can be traced from





Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.