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In this paper we introduce a variant of the single machine considering resource restriction per 

period. The objective function to be minimized is the total tardiness.  We proposed an integer 

linear programming modeling based on a bin packing formulation. In view of the NP-hardness 

of the introduced variant, heuristic algorithms are required to find high-quality solutions within 

an admissible computation times. In this sense, we present a new hybrid matheuristic called 

Relax-and-Fix with Variable Fixing Search (RFVFS).  This innovative solution approach combines the 

relax-and-fix algorithm and a strategy for the fixation of decision variables based on the concept 

of the variable neighborhood search metaheuristic. As statistical indicators to evaluate the 

solution procedures under comparison, we employ the Average Relative Deviation Index 

(ARDI) and the Success Rate (SR). We performed extensive computational experimentation 

with a testbed composed by 450 proposed test problems. Considering the results for the number of jobs, the 

RFVFS returned ARDI and SR values of 35.6% and 41.3%, respectively. Our proposal outperformed the 

best solution approach available for a closely-related problem with statistical significance. 
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INTRODUCTION 

The single-machine sequencing problem has been studied by 

operational research practitioners in the last decades in vew of 

the several applications of this production environment in real-

world scenarios. Although to process the jobs a single machine 

environment is used, this production environment usually 

belongs to the NP-hard class for several objective functions. In 

the last few decades, several researchers have paid attention to 

this production environment, and new features of this problem 

have been introduced. Nowadays, because of the environmental 

issues related to the planning process in industries, sustainable 

manufacturing or green scheduling is a relevant research branch. 

Usually, in a typical production plant, the planners manage 

several resources with distinct levels of scarcity.  

 

In the literature of deterministic scheduling, resource 

consumption is usually ignored in the planning process. However, 

several examples in practice illustrate that resource consumption 

can be relevant in this context. In recent years, resource 

consumption constraints have been widely studied in production 

scheduling problems [3, 9]; nevertheless, the consideration of 

resource consumption per period is quite limited in the available 

literature [25]. Much attention has been paid to single-machine 

scheduling problems in the last decades [13]; however, the 

consideration of resource consumption in this class of problems 

is rather limited in comparison with other production 

environments. 

 

Another research line is the development of efficient solution 

procedures to solve combinatorial optimization problems. In 

recent decades, a crescent interest in heuristics and metaheuristic 

algorithms was observed, given their robustness and modularity. 

Recently, with the development of commercial solvers of mixed-

integer linear programming models, several operational research 

practioners have developed hybrid solution approaches called 

matheuristics. In such solution methods, heuristic algorithms are 

included in the mathematical programming models, aiming to 

reduce the computational time required to solve medium-sized 

and large-sized test instances. 

 

In this paper, we address a single-machine scheduling 

environment with periodical resource constraints to minimize the 

total tardiness. To the best of our knowledge, this variant is not 
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reported yet in the revised literature. The studied order 

scheduling variant was based in many real-world scenarios, like 

precast production [24]. We can consider the production of 

precast beams, with distinct lengths and due dates, which are 

produced in a single form. In each productive period, we can 

observe the consumption of several resources, such as time, labor, 

or materials, which are scarce. 

 

This paper addresses a single-machine scheduling environment 

with periodical resource constraints and total tardiness 

minimization. The new single machine problem has processing 

time and resource consumption parameters. In addition, each 

available production period has a time and resource capacity that 

can be allocated to jobs. Because of such new features, the problem 

under study is closely related to the one-dimensional bin packing 

problem. 

 

The main contributions of this paper are the following: (1) we 

introduce a new variant for the single-machine environment 

relevant to practice; (2) we develop a mixed-integer linear 

programming (MILP) modeling for the addressed variant; (3) we 

propose an innovative hybrid matheuristic that uses a random and 

iterative process to fix decision variables; and (4) we present a 

testbed with 450 randomly generated test instances. 

 

A production scheduling problem under proposition is 

characterized by a single-machine layout in which the jobs have 

different processing times, resource consumption, and due dates. 

Furthermore,  each planning period has two constraints related to 

processing times and resource consumption. Since the problem 

under study is not reported yet, we present some contributions to 

problems with resource consumption. Several contributions to 

resource consumption have been addressed to the parallel-machine 

environment. Thereby, we present here several contributions in this 

production environment, which are related to the problem under 

study. 

 

Ventura and Kim [31] presented a parallel machines scheduling 

layout with resource constraints. The performance measure is the 

minimization of earliness and tardiness penalties. Two heuristics 

were proposed: the first one generates an initial solution, and the 

second one changes an unfeasible solution to a feasible solution. 

Edis and Ozkarahan [8] a variant of the parallel machines 

scheduling problem with addressed a resource constraints that 

arises in the injection-molding processes of electrical appliance 

plants. Since the proposed MILP model failed to solve the problem 

efficiently, two procedures to decompose the original problem into 

subproblems were presented. Ji et al. [14] and Yeh et al. [36] 

studied the resource consumption variant of uniform parallel-

machine scheduling problem. Ji et al. [14] developed a constructive 

heuristic and a particle swarm optimization (PSO) metaheuristic to 

tackle the problem. On the other hand, Yeh et al. [36] presented a 

genetic algorithm (GA) as well as two PSO-based metaheuristics 

as solution procedures. Afzalirad and Rezaejan [1] addressed an 

unrelated parallel machine scheduling problem considering the 

following characteristics:  resource constraints, machine eligibility, 

release dates, sequence-dependent setup times, and precedence 

constraints. Two evolutionary algorithms are developed as solution 

approaches. Afzalirad and Shafipour [2] introduced an unrelated 

parallel machine environment with eligibility constraints and 

multiple resources. Besides, two GA-based metaheuristics are 

presented as solution procedures. Fanjul-Peyro et al. [10] 

considered a parallel-machine variant in a production window with 

limited and fixed resources. Besides, job processing requires the 

consumption of scarce resources. Three matheuristics strategies 

were presented to tackle the problem, all of them based on the 

reduction of decision variables in the original model. Villa et al. 

[32] considered an unrelated parallel machine environment with 

one scarce additional resource. Also, several constructive heuristics 

and local search procedures were presented. 

 

We can observe that contributions considering resource 

consumption constraint in the single-machine scheduling problem 

are still limited, in comparison with the contributions reported to 

parallel-machine problems. Wang et al. [33] introduced a single-

machine variant in which processing times are determined by 

means of a procedure of resource usage. The performance measure 

is the reduction of the total amount of used resources subject to a 

constrained total weighted flow time. A branch-and-bound (B&B) 

algorithm was proposed as solution procedure. Wang and Wang 

[34] studied the problem of processing times with deterioration in 

a single-machine environment. The performance measure of the 

problem is the aggregation of the following objectives: makespan, 

total completion time, the difference between completion time and 

resource usage, and a cost function.  

 

Furthermore, the authors demonstrate that the problem is solvable 

in polynomial time. Zhu et al. [37] studied a single-machine 

scheduling problem in which a resource allocation function 

determines the processing time of a given job. Also, these authors 

showed that the problem can be solved in polynomial time. Wu and 

Cheng [35] presented a single-machine environment with resource 

constraints, which is a non-linear combinatorial optimization 

problem that appears in cloud computing applications. In specific 

situations, this variant is solvable in polynomial time. Herr and 

Goel [13] considered a single-machine scheduling problem with 

family setups and resource constraints to minimize total tardiness. 

Two MILP models were described for two variants of the problem 

under study observed in the stell industry. Also, an iterated local 

search (ILS) metaheuristic was developed to solve large-sized 

problems. For this variant, Pinheiro and Arroyo [22] presented an 

iterated greedy (IG) metaheuristic, which outperforms the ILS 

algorithm proposed by Herr and Goel [13]. Karky and Shabtay [15] 

approached a single-machine scheduling problem to minimize 

resource consumption where the job processing times and due 

dates are decision variables. Since this variant is NP-hard, 

approximation algorithms were presented. Shabtay [29] addressed 

a single-machine scheduling problem with a machine-

unavailability period. In this variant, processing times are resource-

dependent. As such variant is an NP-hard problem, some pseudo-

polynomial time and approximation algorithms were developed. 

Concerning the periodical resource constraints, Prata et al. [25] 

introduced the single-machine scheduling problem with periodical 

resource constraints. As solution approaches, a MILP formulation 

was presented, as well as [18], local search algorithm, 

approximation heuristic approaches, and a matheuristic that 

hybridizes a size-reduction with simulated annealing were 

proposed.  

 

Based on the literature review, we can emphasize the following 
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research gaps. The literature review found that the single-machine 

scheduling problem with resource consumption constraints and 

total tardiness minimization has not yet been studied. Therefore, it 

is a gap to be filled in the present study. Since this production 

environment was not studied yet, there are not test instances 

available in the literature. In this context, a new testbed must be 

provided. Given the distinct characteristics of the variant under 

proposition, innovative solution approaches could be developed. 

The remaining sections of this paper are described below. Section 

2 defines the variant under proposition and the proposed solution 

approach. Section 3 presents the experimental setup, the 

computational experimentation, and the discussion of the results. 

Section 4 provides the main findings and suggestions for future 

studies. 

METHODS 

Although mathematical programming formulation can be a limited 

solution procedure to solve NP-hard problems, the modeling 

process contributes to the problem definition and comprehension. 

In addition, for small-sized test instances, integer linear 

programming models can return high-quality solutions and, in 

some particular cases, global optimal solutions. 

 

Distinct MILP models have been presented for the single-machine 

scheduling problems in the last few decades. We can emphasize 

models with completion time variables [16], time-indexed 

variables [30], or positional variables [7]. Since the variant under 

proposition has a close connection with cutting and packing 

problems [25], we develop here a formulation based on the one-

dimensional bin packing problem, which is a well-known NP-hard 

problem [20]. 

 

Let n be the number of jobs with an associated processing time pj, 

a resource consumption rj, and a due date dj to be processed in a 

single machine. Each planning period has P time units, and a 

periodical constraint of resources limited by R. Each job j has a 

completion time Cj and a tardiness Tj, which can be calculated as 

in Equation (1):  

 

Tj = max{0,C j − d j}                                          (1) 

 

Traditionally, production scheduling problems that consider 

tardiness-related objectives consider a linear calculation of the 

tardiness based on the difference between the completion time of 

the job and its due date.  In our modeling, we calculate Cj as the 

planning period i in which the job j is produced. Thereby, we do 

not create a decision variable for Cj since it can be determined in 

terms of i. In this context, the production environment under study 

presents a relation with the one-dimensional bin packing problem. 

 

Here, we present a MILP model for the variant under proposition. 

 

𝑚𝑖𝑛𝑧 = ∑ 𝑇𝑖

𝑛

𝑗=1

                          (2) 

subject to:  

∑ 𝑥𝑖𝑗
𝑚
𝑖=1 = 1,                                     ∀j                          (3) 

∑ 𝑝𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ⩽ 𝑃𝑦𝑖 ,                     ∀i                           (4) 

 ∑ 𝑟𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ⩽ 𝑅𝑦𝑖 ,                          ∀i                           (5) 

 𝑇𝑗 ≥ 𝑖𝑥𝑖𝑗 − 𝑑𝑗 ,                              ∀i,j                          (6) 

𝑇𝑗 ≥ 0,                                           ∀j                          (7) 

 𝑦𝑖  ∈ {0,1},                                      ∀i                          (8) 

𝑥𝑖𝑗 ∈ {0,1},                                      ∀i,j                          (9) 

Equation (2) illustrates the minimization of total tardiness as an 

objective function. Constraints (3) force that all jobs are allocated 

in a single period. Constraints (4) and (5) ensure that each period 

respects the time and resource consumption capacity. Constraint 

(6) illustrates how tardiness is calculated for each job. The sets of 

constraints (7), (8), and (9) represent the domain of the decision 

variables. The developed formulation has m(n + 1) binary decision 

variables, n continuous decision variables, and  2n(1 - m) + 3m 

integer linear constraints. 

 

The estimation of the number of planning periods plays a key issue 

in the efficiency of MILP models for scheduling problems with 

multiple periods [23]. The higher the number of planning periods, 

the more decision variables in the model. Since not all of these 

decision variables will be selected in the optimal solution, a more 

accurate estimate of the number of planning periods can improve 

the resolution process. However, if the number of periods is not 

sufficient to process all the jobs, the model would not have a 

feasible solution. 

 

We adopt the same estimation presented by Prata et al. [25], 

considering the Next-Fit (NF) algorithm [28]. NFP is the amount 

of minimum periods considering only the time constraint and NFR, 

is the amount of periods considering only the resource 

consumption constraint, the number of periods upper bound can be 

obtained by: 

 

UB = max {NFP, NFR}                                                           (10) 

 

The lower bound for the number of planning periods can be 

determined using Equation (11) [25]: 

 

𝐿𝐵 = 𝑟𝑜𝑢𝑛𝑑{𝑚𝑎𝑥{
∑ 𝑝𝑗

𝑛
𝑗=1

𝑇
,

∑ 𝑟𝑗
𝑛
𝑗=1

𝑅
}}                                        (11) 

 

Let us consider a toy model with p = {2, 1, 5, 4, 3}, r = {3, 3, 4, 1, 

1}, P = 5,  R = 4,  d = {3, 2, 1, 2, 2}, and UB = 4  – calculated as in 

Equation (10). Based on this data, the optimal solution is the 

sequence Π = 3, 2, 4, 1, 5 , with a total tardiness of 1 time unit. In 

this solution, the completion time and tardiness vectors are given 

by C = {3, 2, 1, 2, 3} and T = {0, 0, 0, 0, 1}. Figure 1 illustrates this 

solution, in which ρ in the resource consumption per period.  

 
 

 

Figure 1. Gantt Chart for the Illustrative Example 
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Algorithm 1: Relax-and-Fix with Variable Fixing Search 
(RFVFS) 

 

 Input: p j, r j, d j, P, R, tlimit , nstarts, prob 

 Output: A schedule (π) and a total tardiness TT 

  Solve the linear relaxation of the problem – Equations (2)-

(9) – and store the values of decision variable xi j in xrelax 

     k ← 1 

  while    k   ≤  nstarts do 

 if k = 1 then 

Solve the problem – Equations (2)-(9) – and store the 

values of decision variable xi j in xwarm 

 k ← k + 1 

 else 

Use the values of  xwarm obtained in the previous iteration 

as a warm start for the current iteration. 

Solve the problem – Equations (2)-(9) – and store the 

values of decision variable xij in  xwarm 

         k ← k + 1  

 

 

 

 

 

 

 

Concerning the proposed variant, the following main comments 

can be emphasized. First, even for a single-machine problem, 

slacks in each production period can appear if the resources are not 

fully used in a given planning period. For this reason, the variant is 

closely related to the one-dimensional bin packing problem. If the 

empty spaces in each planning period are reduced, the solution 

generated tends to present lower total tardiness. Second, the bin 

packing problem presents two constraints: the first one is related to 

the planning periods, and the second one is related to resource 

consumption. In this context, the complexity of the scheduling 

problem under study is higher than a standard one-dimensional bin 

packing problem. Finally, the tardiness for each job is calculated 

differently to other due-date based scheduling problems. Usually, 

the linear tardiness for a given job is established comparing the 

completion time of this job with its respective due date. In our 

variant, we determine the tardiness with respect to the planning 

period in which the job is processed.  

 

Metaheuristics present as their main advantages the modularity and 

robustness for solving combinatorial optimation problems. 

Nevertheless, such algorithms do not provide a notion of distance 

for the solution returned and the optimal solution. On the other 

hand, mathematical programming approaches present a gap of the 

current solution to the best-so-far lower bound obtained in the 

search process. However, the computational cost to solve larged-

sized or even medium-sized test instances can be prohibitive in 

certain circumstances. Currently, several authors have applied the 

hybridization of heuristics and integer linear programming to solve 

production scheduling problems [4, 6, 12, 18, 23, 26].  

 

The number of decision variables plays a key role in the resolution 

process of an integer programming model in a commercial solver. 

Usually, robust solvers present a pre-processing stage in which 

some decision variables and problem constraints are removed, 

aiming to reduce the computational times to solve a given 

combinatorial optimization problem. Nevertheless, such 

preliminary processing also can consume a considerable 

computational time, mainly for large-sized test problems. In 

addition, for a given test instance, several decision variables of an 

integer programming model can be fixed as zeros because of the 

low possibility of such variables appearing in the global optimal 

solution. For example, the decision variable associated with the 

parameter with the largest cost probably will not be selected in the  

global optimal solution. In this context, we propose an innovative 

matheuristic that  explores in each iteration a distinct structure for 

variable fixing. 

 

The variable neighborhood search [21] is a recognized 

metaheuristic that investigates several heterogeneous 

neighborhoods of the incumbent solution. The algorithm changes 

the neighborhood to a new one considering the improvement in the 

value of the objective function. Recently, some researchers have 

proposed hybrid matheuristics combining mathematical 

programming and the VNS framework for other combinatorial 

optimization problems such as nurse scheduling [5, 27] and bin 

packing problems [17]. 

  

In accordance with the experience of the author, the fixation 

process of decision variables is a complex task. Although one can 

deterministically determine the decision variables to be fixed based 

on the parameters of a given test instance, this way can lead to a 

deterioration in the value of the objective function found. As in the 

case of heuristic algorithms, the use o deterministic procedures can 

lead the search process to locally optimal solutions. In this context, 

probabilistic operators can propitiate that the search process scape 

from local optimal.    

 

In the developed solution procedure, we explore several fixations 

during the search process. Initially, we employ the information of 

the linear relaxation to guide the fixation of the decision variables. 

Based on preliminary experiments, we could observe that if a 

decision variable has a null value in the relaxed solution, it will 

probably have the null value also the solution with integer decision 

variables. The first step of our algorithm is to solve the linear 

relaxation and store the results in the matrix xrelax. 

 

Considering the values of xrelax, we interactively fix with zero some 

decision variables in the mixed-integer linear programming model 

based on a given probability. In the first iteration of this process, 

the search process in the mixed-integer model begins with an 

empty solution. For all i and j, if xrelax = 0, a random number in the 

interval [0, 1] is then generated. If this random value is higher than 

the probability prob, the integer decision variable xij is fixed as 

zero. After a partial time limit, which is given by tpartial = tlimit/nstarts, 

the better integer solution found is stored in xwarm and used as a 

warm start for the next iteration. This process is repeated until the 

specified time limit is not exceeded. 

 

Based on the above, our proposed matheuristic called Relax-and-

Fix with Variable Fixing Search (RFVFS) is summarized as in 

Algorithm 1. As inputs of the proposed matheuristic, we have an 

instance of the problem under study, as defined in Section 3, as well 

as the two parameters of the algorithm (nstarts and prob). As outputs 

of the proposed algorithm, we have A sequence π and a total 

tardiness TT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS AND DISCUSSION 

We employ the Relative Deviation Index (RDI) [11] to evalaute the 

methods under comparison. Let H be a set of solution procedures, 

the RDI found for the method s    H when used to the test instance 

t is determined as in Equation (12).  
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Table 1. Parameters Employed in the Test Instance Generation 

Parameters Levels 

Number of jobs n ∈ {50, 100, 250, 500, 1000} 

Processing time distribution [50, 100] 

Resource consumption 

distribution 

[50, 100] 

Maximum duration of the 

planning periods 

200 

Maximum amount of resource for 

each planning period 

200 

Tardiness factor [0.2, 0.5 ,0.8] 

Due date ranges [0.2, 0.5, 0.8] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑅𝐷𝐼𝑠𝑡 = {

0, if min
ℎ∈𝐻

𝑇ℎ𝑡 = max
ℎ∈𝐻

𝑇ℎ𝑡,

𝑇𝑠𝑡 − min
ℎ∈𝐻

𝑇ℎ𝑡

max
ℎ∈𝐻

𝑇ℎ𝑡 − min
ℎ∈𝐻

𝑇ℎ𝑡
⋅ 100, otherwise. 

 

 

 (12) 

 

where Tst is the tardiness value returned by solution procedure s in 

the test instance t. In our study,  minh∈H Tht is the best solution 

found among the methods under comparison. We used the average 

RDI (ARDI) for each set of instances as aggregate performance 

measure. 

 

We also used the success rate (SR) as another performance 

measure. It is the ratio of the times a method finds the best solution 

divided by the total number of tested instances. Equation (13) 

expresses the calculation of the SR indicator.  

 

𝑆𝑅 =
𝑛𝐵𝐸𝑆𝑇

𝑛𝐼𝑁𝑆𝑇
× 100                                                                     (13) 

 

where 𝑛𝐵𝐸𝑆𝑇 is the number of test instances in which the solution 

approach found the best objective function value and 𝑛𝐼𝑁𝑆𝑇 is the 

number of evaluated test instances.  

 

Since the variant under study has not been previously addressed, 

we need to generate a new set of test instances. Additional 

information not available in the traditional variants of the single-

machine scheduling problem becomes necessary. Aside from the 

generation of the processing times, in our variant, we also need to 

generate resource consumption for all jobs, constraints for the 

planning period, and resource consumption per period. 

 

The production scheduling problem under study has a peculiar 

characteristic where the sequencing process considers two one-

dimensional bin packing problems. The first one is related to the 

processing times constrained to a maximal duration of the planning 

period. The second one is related to the resource consumption for 

each job and the maximal amount of resources for each planning 

period. After several preliminary computational experiments, we 

could observe that processing times and resource consumption for 

each job generated with a uniform distribution U[50, 100] 

generates difficult test instances. The associated knapsack 

constraints also play a key role in the difficult of a given test 

problem. After several previous simulations, we could observe that 

such constraints could be set with a value of 200. 

 

We consider the following parameters for the testbed generation: 

the number of jobs (n), the tardiness factor (TR), and the due date 

range (RDD), as described in Table 1. We defined the values of 

these parameters taking the previous literature into account. The 

total number of instance classes is given by 5 (n) × 3 (TR) × 3 

(RDD) = 45. Aiming to reduce the sampling error, we generated 10 

test instances for each class, resulting in 450 test problems.  

 

Although metaheuristics are robust solution procedures to solve 

hard combinatorial optimization problems, one of their main 

advantages is the need for the calibration of several parameters. In 

this paper, we developed a matheuristic with a low dependency on 

parameters. In the design of the algorithm, we perceived a tradeoff 

between diversification and intensification related to the number of 

restarts. In addition, after several preliminary experiments, we can 

show that the fixation of the decision variables presents a relevant 

impact on the quality of the solutions found. If we fix a given 

number of decision variables less than or equal to ten percent, the 

fixation process does not present a significant benefit. On the other 

hand, if we fixed more than fifty percent of the number of decision 

variables, we could observe a substantial loss in the quality of the 

solutions returned by the proposed matheuristic. In addition, after 

several simulations, we could not observe a significant discrepancy 

in the results obtained in a range of fifty percent and ninety percent 

of fixation for the decision variables. 

 

Although metaheuristics are robust solution procedures to solve 

hard combinatorial optimization problems, one of their main 

advantages is the need for the calibration of several parameters. In 

this paper, we developed a matheuristic with a low dependency on 

parameters. In the design of the algorithm, we perceived a tradeoff 

between diversification and intensification related to the number of 

restarts. In addition, after several preliminary experiments, we can 

show that the fixation of the decision variables presents a relevant 

impact on the quality of the solutions found. If we fix a given 

number of decision variables less than or equal to ten percent, the 

fixation process does not present a significant benefit. On the other 

hand, if we fixed more than fifty percent of the number of decision 

variables, we could observe a substantial loss in the quality of the 

solutions returned by the proposed matheuristic. In addition, after 

several simulations, we could not observe a significant discrepancy 

in the results obtained in a range of fifty percent and ninety percent 

of fixation for the decision variables. 

 

Our proposed matheuristic presents two parameters: the number of 

starts (nstarts) and the probability of fixing a decision variable 

(prob). Concerning the number of starts, we could observe a trade-

off between diversification and intensification. In view of the 

adopted time limit (tlimit = n seconds), with a number of starts 

higher than 3 the matheuristic presented difficulty in finding high-

quality solutions. Thus, we used  nstarts = 3 in our proposal. With 

respect to the probability to fix decision variables, we can observe 

that probabilities in the range of 0.5 and 0.9 conducted to good 

results. In this sense, we used prob = 0.8 in our proposed solution 

procedure.  

 

Aiming to evaluate the proposed mixed-integer linear 

programming and the proposed Relax-and-Fix with Variable 

Fixing Search, we perform computational experimentats with the 

450 test instances generated. All the evaluated methods were 

implemented in Julia programming language 

(https://julialang.org/). The Integrated Development Environment 

https://doi.org/10.25077/josi.v21.n2.p97-105.2022
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Table 2. Results for n values 

 RDI SR 

n MILP SASR RFVFS MILP SASR RFVFS 

50 34.4 72 30.0 53.3 18.9 30 

100 34.3 98.5 10.6 37.8 0 63.3 

250 33.9 22.5 95.0 48.9 53.3 0 

500 82.3 13.2 42.4 12.2 74.4 13.3 

1000 92.6 49.6 0.0 0.0 0.0 100 

Average 55.5 51.2 35.6 30.4 29.3 41.3 

 

Table 3. Results for TF and RDD values. 

  RDI SR 

TF RDD MILP SASR RFVFS MILP SASR RFVFS 

0.2 0.2 70.1 52.4 19.3 18.9 14.4 66.7 

0.2 0.5 65.3 42.6 33.6 26.0 32.0 42.0 

0.2 0.8 50.4 52.5 39.5 32.0 28.0 40.0 

0.5 0.2 57.4 50.2 34.7 28.0 34.0 40.0 

0.5 0.5 57.3 51.1 37.7 30.0 28.0 44.0 

0.5 0.8 65.5 47.8 33.1 18.0 40.0 42.0 

0.8 0.2 47.6 53.5 36.1 38.0 26.0 38.0 

0.8 0.5 53.6 53.0 33.9 36.0 26.0 40.0 

0.8 0.8 51.5 55.3 36.9 32.0 24.0 46.0 

Average 57.6 50.9 33.9 28.8 28.0 44.3 

used was the VSC (Visual Studio Code - 

https://code.visualstudio.com/). 

 

For the MILP model and the matheuristics, we used the 

commercial solver Gurobi (https://www.gurobi.com/) version 

9.0.3 with JuMP library 

(https://www.juliaopt.org/JuMP.jl/stable/) [19]. We performed the 

tests on a PC with Intel Core 2 Duo CPU 3.00GHz and 4GB 

memory, with the Windows 10 operating system. 

 

Regarding solution procedures evaluated in the proposed test 

instances, the following approaches have been compared: 

• The MILP model, as in Equations (2)-(9). 

• The matheuristic Size Reduction with Simulated Annealing 

(SRSA), proposed by Prata et al. [25]. We selected this 

solution approach since it is developed for the most closely 

related problem identified in the literature review. We adapted 

this algorithm for the total tardiness objective. 

• The matheuristic Relax-and-Fix with Variable Fixing Search 

(RFVFS) (our proposed solution approach). 

 

Although there are several approximate algorithms for the single-

machine scheduling problem with total tardiness minimization, in 

our view, a comparison with such solution approaches would not 

be fair. In the problem under study, we have resource consumption 

per period, and the total tardiness is determined using bin packing 

constraints. Based on the revised literature, the closely-related 

solution approach is the SRSA matheuristic developed by Prata et 

al. [25]. Although the above-mentioned solution procedure has 

been developed for the makespan minimization, the associated bin 

packing constraints are quite similar. 

 

For all the methods under comparison, we use a time limit  tlimit = 

n seconds. Besides, since the SRSA and RFVS are stochastic 

algorithms, we run each algorithm five times and report the average 

values. Table 2 describes the results of average RDI and SR values 

considering the number of jobs. In resume, the following analysis 

can be point out: 

• The MILP model presented a similar performance for the test 

instances with 50, 100, and 250 jobs. However, for the test 

instances with 500 and 1000 jobs, there was a worsening in 

the RDI and SR values. For the test problems with 1000 jobs, 

the MILP model could not find any better solution. In 

addition, we can also observe that the MILP model returned 

competitive results for the test instances with 50 and 250 jobs.  

• The SASR matheuristic presented a worse performance in the 

test instances with 50 and 100 jobs. For the test problems with 

100 jobs, the SRSA algorithm could not find any better 

solution. For the test problems with 250 jobs, its performance 

was the best in comparison with the MILP model and RFVFS. 

For the test instances with 500 jobs, the SRSA and RFVFS 

algorithm presented a similar behavior. 

• The RFVFS presented better results for the test instances with 

50, 100, and 1000 jobs. For the test instances with 250, the 

RFVFS could not find any better solution. On the other hand, 

for the test instances with 1000 jobs, this solution procedure 

could find the best solution for all the evaluated problems. 

 

Considering the average results for n values, we can observe that 

the MILP model and the SASR presented outputs of the same 

magnitude (respectively, 55.5% and 51.2% for the average RDI 

values; 30.4% and 29.3% for the SR values). On the other hand, 

the proposed RFVFS matheuristc returned better results for both 

indicators (respectively, 35.6% for the average RDI values and 

41.3% for the SR values). This difference points out the 

superiority of the proposed solution approach when compared 

with the MILP model and the SASR matheuristic. 

 

Table 3 illustrates the results of average RDI and SR values with 

respect to TF and RDD. In resume, the following analysis can be 

point out:  

• The RFVFS presented an average RDI value of around 35% 

for all combinations of TF and RDD except for the test 

instances with TF = 0.2 and RDD = 0.2, in which the average 

RDI value was of 19.3%. This indicates that the proposed 

solution approach presented a stable behavior.  

• In the same way, the RFVFS presented a stable value of SR 

of around 40% for all combinations of TF and RDD except 

for the test instances with TF = 0.2 and RDD = 0.2, in which 

the average RDI value was of 66.7%. This result reinforces 

the tendency of stability of the proposed solution approach. 

 

Considering that we have evaluated three distinct solution 

approaches, we must determine if the difference between the 

results found is statistically significant. In this context, we 

performed a statistical analysis based on two steps. In the first one, 

we used the statistical test Analysis of Variance (ANOVA) to 

evaluate if there is a significant difference in the average relative 

percentage deviation for the solution approaches under 

comparison. The second one is Tukey’s range test, in which a 

pairwise comparison among the evaluated methods is performed.  

 

Figure 2 presents the boxplots for average relative deviation index 

values. In addition, we accomplish an ANOVA test to determine if 

https://doi.org/10.25077/josi.v21.n2.p97-105.2022
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Figure 2. Boxplot for ARDI Values fortThe Methods under 

Comparison 

 

Figure 3. Tukey’s Confidence Intervals for ARDI Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the difference between the ARPD values found is significant. 

Since the ANOVA returns a statistic 26.8, a value much higher 

than the critical value 4.39, the difference among the methods 

under comparison is statistically significant. After that, Figure 3 

illustrates the Tukey’s confidence intervals for ARDI values. We 

can observe that our proposed matheuristic outperform all other 

methods under comparison.  

 

Based on the statistical analysis, the following comments can be 

addressed. First, the performed comparison is fair since we run 

all the methods under comparison in the same hardware, coded 

in the same programming language, and using the same time limit 

as the stop criterion. Second, based on Tukey’s range test, the 

MILP model and the SRSA matheuristic presented results 

without a statistically significant difference. Thereby, we verified 

a draw between both solution approaches. Third, given the 

pairwise comparison performed, we can emphasize that the 

proposed Relax-and-Fix with Variable Fixing Search returned 

better results than the MILP model and the SRSA algorithm 

 

 

CONCLUSIONS 

In this paper, we introduced a new variant of the single-machine 

scheduling problem, taking periodical resource constraints into 

consideration. The performance measure is total tardiness 

minimization. A MILP formulation is proposed for the problem 

under study. Furthermore, some problem properties have been 

addressed. As the solution procedure approach, we presented a 

hybrid matheuristic named Relax-and-Fix with Variable Fixing 

Search (RFVFS). The developed algorithm iteratively fixates 

several decision variables using a variable neighbourhood search 

framework. This probabilistic procedure was able to find 

promising results.  

 

Since the problem under study is not reported yet, we proposed a 

new set of 450 randomly generated test instances. These 

instances were generated after several preliminary computational 

experiments.  In our proposed solution approach, we were able to 

find high-quality solutions within admissible computational 

times. In addition, the proposed matheuristic presents a low 

dependency on its parameters, pointing to the robustness of this 

developed solution procedure.  

 

The computational experience pointed out that the proposed 

matheuristic outperformed the MILP model. In addition, the 

proposed RVFVS also outperformed SRSA metaheuristic – the 

most efficient solution procedure for the closest related variant 

available in the literature. The superiority of the proposed 

solution approach can be verified by means of the average 

relative percentage deviation and the success rate. In addition, we 

performed an ANOVA and a Tukey’s range test to evaluate if this 

difference was statistically significant.  

 

As suggestions for future research, the main research avenues can 

be highlighted. In the proposed solution approach, the decision 

variables were randomly selected to be fixed as zero in the sub-

problem optimization. Thereby, we can consider fixation 

strategies that take problem characteristics into account. In 

addition, we can hybridize our variable neighbourhood search 

framework with other metaheuristics. For example, a tabu list can 

be considered to avoid the fixation of the same decision variables 

in two consecutive iterations of the search process. Another 

possibility is the consideration of an iterated greedy framework 

to destroy and build new fixation schemes into the incumbent 

solution. Recent studies have hybridized constraint programming 

and metaheuristics to solve production scheduling problems. The 

proposition of a constraint programming formulation and a 

hybrid algorithm is a promising research line. 

 

Another suggestion for future studies is to consider other 

objective functions for the variant addressed in this paper, such 

as the total completion time or weighted earliness/tardiness 

penalties (just-in-time environment). The consideration of multi-

objective variants of the production environment under study can 

be investigated. The explicit consideration of the periodical 

resource constraints in production scheduling problems is rather 

limited. We can also consider this type of constraint in other 

production environments, such as identical parallel machines, 

unrelated parallel machines, permutation flow shop, hybrid flow 

shop, job shop, or open shop.  
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NOMENCLATURE 

i      index for periods {1,2,...,m}. 

j      index for jobs {1,2,...,n}. 

pj     processing time of job j.  

r j     required resource of job j.  

d j    due date of job j. 

P     maximum duration of the periods. 

R     maximum amount of resource for each period. 

Tj     tardiness of job j. 

yi     if period i is used; 0, otherwise. 

xij    if job j is produced in period i; 0, otherwise. 
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