
JURNAL OPTIMASI SISTEM INDUSTRI - VOL. 21 NO. 1 (2022) 20-27 

 

 
Available online at : http://josi.ft.unand.ac.id/ 

Jurnal Optimasi Sistem Industri 
|    ISSN (Print) 2088-4842    |    ISSN (Online) 2442-8795    |  

 

 

DOI: 10.25077/josi.v21.n1.p20-27.2022                                                                                                                    License CC BY-NC-SA 

Research Article 

 

 

 

 

 

 

 

 

 

 

ARTICLE INFORMATION  A B S T R A C T  

Received : March 22, 2022 

Revised : April 24, 2022 

Available online : May 31, 2022 

Multi-objective optimization in manufacturing can effectively be solved using Multicriteria 

decision-making (MCDM) techniques. This paper presents the implementation methodology of 

the Fuzzy-MOORA hybrid technique for multi-objective optimization in laser machining of 

stainless-steel gears. Further, simultaneous optimization of gear quality and process 

productivity have been reported. Four important laser parameters, i.e., laser power, cutting 

speed, focal position, and gas pressure, have varied during twenty-nine experiments to machine 

gears by a laser process. The quality of miniature gear was measured in terms of average surface 

roughness, mean roughness depth, and dimensional deviation. The productivity of the laser 

machining process was estimated via material removal rate. An optimum set of laser machining 

parameters obtained after Fuzzy-MOORA optimization is laser power 2000 W, cutting speed 3 

m/min, focal position -2.5 mm, and gas pressure 16 bar. This work encourages researchers and 

scholars to make further attempts using such MCDM techniques to develop intelligent processes 

in industrial and manufacturing engineering. 
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INTRODUCTION 

In the era of the fourth industrial revolution, manufacturing sector 

strives to innovate and incorporate intelligent techniques for 

product manufacturing. To stay competitive, industries are 

increasing capacities and adopting the best machineries, tools, 

equipment, and processes. Good product design, efficient plant 

layout, low manufacturing cost and time, quick response etc. are 

some of the attributes of the modern manufacturing industry. All 

activities including manufacturing processes require systematic 

planning and optimization. Automation, optimization, machine 

learning based fault detection, and intelligent maintenance etc. 

are key techniques [1].  

Cost, quality, and productivity are important factors and need to 

be optimized for the overall success in manufacturing. 

Engineered products and mechanical components such as gears 

are backbone of many industries [2]. Manufacturing of high 

quality gears is therefore essential for the better performance of 

the machineries, devices, and instruments where gears are used. 

The commercial manufacturing of gears is accomplished with the 

help of many types of manufacturing processes including 

machining [2]. Advanced machining processes such as electric 

discharge machining, laser cutting, and abrasive water jet 

machining etc. are being attempted as alternate of conventional 

manufacturing to develop commercial gears [3,4]. In all of these 

processes, gear quality and process productivity are considered 

as major responses or outputs. Both responses are important but 

conflicting in nature as it needs a compromise with quality when 

the objective is to achieve high productivity. It is because the 

values of parameters required to increase process speed or 

material removal rate to achieve high productivity mostly 

produce low manufacturing quality [5-7]. This compels to apply 

a suitable optimization technique for simultaneous optimization 

of process parameters to secure the best values of quality and 

productivity at a single set of parameters. Multi-criteria decision 

making (MCDM) optimization techniques such as Multi-

Objective Optimization Based on Ratio Analysis (MOORA), 

Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS), Vise Kriterijumska Optimizacija I Kompromisno 

Resenje (VIKOR), and Analytical hierarchy (AHP) etc., have 

been found very effective for the same problems in various 

manufacturing processes [5]. Hybridization of these processes 

with soft computing or evolutionary algorithms, increases the 

effectiveness. Fuzzy-MOORA is one of such hybrid technique 

which has been found useful by many past researchers. Some 

important past research attempts on Fuzzy-MOORA based 

optimization of manufacturing processes are discussed below. 

In a recent study, Jhodkar et al. [8] successfully utilized Fuzzy-

MOORA for multi-objective optimization in turning of Titanium. 

Machining at optimum combination of process parameters i.e., 

cutting speed 140 m/min, tool overhang length 65 mm, and 
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Variable 

Parameter 
Unit 

Levels and Corresponding 

Values 

1 2 3 

Laser Power W 1500 2000 2500 

Cutting Speed m/min 1 2 3 

Focal Position mm -3.5 -2.5 -1.5 

Gas Pressure bar 10 13 16 

hardness of work material 1934 HV, resulted in the best 

machinability in terms of the optimum values of tool flank wear, 

cutting force, and surface roughness, simultaneously. Emovon et 

al. [9] conducted an investigation on optimization in design and 

fabrication of an automated hammering machine and found 

Fuzzy-MOORA effective indeed and at par with other Fuzzy 

based hybrid techniques. To simultaneously optimize two 

important machinability indicators, namely, surface roughness 

and micro-hardness of nitinol work material, Majumder and 

Maity [10] conducted a multiperformance optimization of wire-

EDM process to yield the best results by employing Fuzzy-

MOORA hybrid technique. Nitinol is a type of shape memory 

alloy and while machining this material by advanced processes 

such as wire-EDM, it’s a normal to encounter with the 

multicriteria decision making problems. It is imperative to make 

a selection of the suitable optimization technique. With a 

hybridization of Fuzzy and MOORA, the optimum wire-EDM 

parameters for improvement in roughness and hardness of the 

machined shape memory alloy can be secured. Not only for 

manufacturing, the hybrid technique of Fuzzy-MOORA has been 

found effective to solve complex decision-making problems in 

industrial engineering scenario [11,12].  

Gupta and Jain [6] used desirability analysis for multi-

performance optimization during wire electric discharge 

machining of gears [6]. They obtained manufacturing quality of 

German standard DIN 7 and 1.1-microns surface finish.  Anghel 

et al. [3,13] also use desirability analysis technique for 

simultaneous optimization of gear quality and productivity of the 

laser machining process. They considered mean roughness depth, 

average roughness, dimensional deviation, and material removal 

rate, as machinability indicators to estimate quality and 

productivity respectively. Optimum values of four important 

laser parameters, namely, laser power, focal distance, cutting 

speed, and gas pressure, resulted in miniature stainless-steel gears 

equipped with average roughness Ra- 0.43 microns. 

Additionally, a better surface quality in terms of thinner heat 

affected zone was obtained. Multi-response optimization 

successfully improved gear surface quality and laser productivity 

simultaneously with not more than 6% difference between 

predicted and experimental values. Phokane et al. [14] used 

particle swarm optimization and obtained the best set of abrasive 

water jet machining parameters for improvement in mean 

roughness depth of miniature gears of brass. It was a single-

performance or single-objective optimization attempt and 

resulted in 5.85% improvement in the value of mean roughness 

depth (Rz- 4.10 µm). Although they considered some responses 

in their work for quality and productivity, but no multi-response-

based optimization was reported. 

A review of the past work on optimization of manufacturing 

processes using Fuzzy-MOORA indicates that this hybrid 

technique has a potential to perform multi-objective optimization 

for improvement in quality, productivity, and other outputs. A 

review of the past work on multi-objective optimization of gear 

machining processes, reveals that most of the work is based on 

traditional statistical techniques and no work is found on Fuzzy 

based or any other soft computing technique.  The work reported 

in this paper attempts to fill this gap with the following 

objectives: 

• To optimize the laser machining parameters and secure their 

best values for conflicting responses i.e., quality (surface 

roughness and dimensional deviation) and productivity 

(MRR). 

• To hybridize two techniques i.e., fuzzy and MOORA and 

harnessing their potential for parametric optimization in 

laser machining of gears.  

• To set appropriate criteria and weights for a better 

performance of optimization techniques. 

• To normalize the experimental data for a better 

synchronization and enhanced accuracy of the optimization 

results. 

• To make recommendations on the effectiveness of Fuzzy-

MOORA hybrid technique for gear manufacturing with 

possible optimum outputs. 

In this paper, we have reported the important aspect of the 

optimization of laser cutting parameters for manufacturing of 

quality gears. A detailed methodology of implementation of 

Fuzzy-MOORA hybrid technique for simultaneous optimization 

of gear quality and productivity of the laser cutting process and 

outcomes are discussed. 

METHOD 

Figure 1 presents the steps followed for manufacturing of gears 

by laser machining and its optimization. Table 1 shows the 

representation of four controllable factors, namely, laser power, 

cutting speed, focal position, and gap pressure together with their 

high, medium and low levels as reported in [3,4]. To design the 

experiments using four factors, where each of them is varied at 

three levels, Box Behnken technique of response surface 

methodology has been used [15]. Twenty-nine experimental 

combinations or settings of laser machining parameters have 

been generated using their values and levels as given in Table 1. 

Figure 1. Sequence of tasks in laser machining and 

optimization of gears 

Table 1: Variable Parameters and Their Levels for Laser 

Manufacturing of Gears [4] 
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Therefore, a total of twenty-nine experiments have been 

conducted and the values of response parameters, namely, 

average roughness, mean roughness depth, dimensional 

deviation; and material removal rate, have been 

measured/obtained against every single experiment. 

MOORA method can be utilized to determine the most suitable 

alternative combinations for multi-criteria decision making. 

Brauers and Zavadskas founded [16] this methodology while 

attempting to optimize numerous conflicting criteria that where 

subject to several constraints. The two most vital factors in the 

MOORA method are the ratio system and the reference point, 

where each alternatives’ overall performance is determined. 

Manufacturing plants, insurance, industrial and banking sectors 

are some of the areas in which this method is used, wherein some 

of these fields encounter issues where more than two elements 

conflict each other and the best choice needs to be identified. 

Such cases are optimized by utilizing the MOORA techniques 

and many researchers have used this technique so far [16]. 

Step 1: Equation 1 makes use of the input parameters to give 

performance of responses as initiated by the MOORA method. 

𝑃 =  [

𝑝11
𝑝21

     
𝑝12
𝑝22

    
…
…   

𝑝1𝑏
𝑝2𝑏

⋮
𝑝𝑎1

     
⋮
𝑝𝑎2

   
⋱
⋯
  
⋮
𝑝𝑎𝑏

]  (1) 

Nomenclature for where the pij are the response outputs of the ith 

alternative on the jth criterion, the number of several criteria and 

alternatives are represented by a and b. 

Step 2: Equation 2 below uses the formation ration system to 

normalize the data decision matrix. 

𝑝𝑖𝑗
∗ =

𝑝𝑖𝑗

√∑ 𝑝𝑖𝑗
2𝑏

𝑖=1

  (𝑗 = 1,2, … , 𝑛)  (2) 

where the p*ij would be the normalized value that is in between 0 

and 1, it is also a dimensionless quantity of the ith alternative on 

the jth criterion. 

Step 3: MOORA index is used to identify the ranking scores. 

Alternatively, Equation 3 is employed in subtracting and adding 

of weighted normalized values in line with each alternative to 

determine the overall assessment values (qi). Normalized values 

in minimization of non-beneficial (lower-is-better) are subtracted 

wherein the case maximization of beneficial (higher-is-better) 

response are added to obtain the overall assessment values in 

multi-objective optimization. 

𝑞𝑖 =  ∑ 𝑝𝑖𝑗
∗𝑥

𝑗=1  − ∑ 𝑝𝑖𝑗
∗𝑦

𝑗=𝑥+1   (3) 

where the x is the number of criteria that must be maximized 

belonging to the benefit responses, y represents the number of 

criteria that requires to be minimized. qi, depending on all 

criteria, denotes the assessed normalized number of the ith 

alternative. 

It was initially thought that some criteria were more important 

than others and by assigning additional weight, it can be 

accomplished. In such a case, Equation 4 would be the better 

representation of Equation 3. 

𝑞𝑖 = ∑ 𝑟𝑗
𝑥
𝑗=1 𝑝𝑖𝑗

∗ − ∑ 𝑟𝑗
𝑦
𝑗=𝑥+1 𝑝𝑖𝑗

∗   (4) 

where rj is the weight of the jth criteria. 

Step 4: The overall computed assessment values in the decision 

matrix are used to determine either negative or positive based on 

non-beneficial or beneficial factors respectively. The MOORA 

value qi finds the optimal result value which illustrates both the 

lowest value (worst result) and highest value (best result).  

To ensure that best outcomes are obtained for multi conflicting 

criteria-based manufacturing, the fuzzy set theory assists in the 

treatment of uncertainties in the ambiguity and vagueness form. 

The linguistic approach was constructed by fuzzy logic, in the 

fuzzy set theory, whereby the variables can assume values that 

are linguistic [17]. The given options by the decision makers are 

termed as quantified linguistic variables, with the assistance of 

the fuzzy set theory. For converting aforementioned variables 

that are linguistic into a different fuzzy number, a fuzzy 

membership function is used. Figure 2 illustrates the Fuzzy 

membership function in a triangular form.  

There are essential fuzzy set theory and fuzzy number definitions 

are explained as follows [18-19]: 

Definition 1: The grade of membership of g in �̃� represents the 

fuzzy set �̃�  in a universe of discourse X as explained by a 

membership function μ�̃� (g). 

Definition 2: �̃�  represents the membership function of the fuzzy 

value which is determined by Equation 5, where �̃� = (p1, p2, p3) 

represents the triangular fuzzy numbers (TFNs). 

𝜇𝐴(𝑔) =

{
  
 

  
 
0      
𝑔−𝑝1

𝑝2−𝑝1

𝑝3−𝑔

𝑝3−𝑝2

0      

        

𝑔 < 1            

𝑝1 ≤ 𝑔 ≤ 𝑝2

𝑝2 ≤ 𝑔 ≤ 𝑝3

𝑔 > 𝑝3           

  (5) 

Definition 3: Triangular fuzzy numbers can be given by the fuzzy 

subtraction and fuzzy sum of 2 different triangular fuzzy 

numbers. However, the multiple of 2 different triangular fuzzy 

numbers yields an approximate TFN. For instance, the following 

2 TFNs �̃� = (p1, p2, p3) and �̃� = (q1, q2, q3) with a positive real 

number w = (w, w, w), a number of vital operations of fuzzy 

numbers can be represented by Equations 6 -10 as follow: 

�̃�(+)�̃� = (𝑝1 + 𝑝2, 𝑞1 + 𝑝2, 𝑞1 + 𝑟2)  (6) 

Figure 2. A Triangular Fuzzy Membership Function 
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�̃�(−)�̃� = (𝑝1 − 𝑝2, 𝑞1 − 𝑞2, 𝑟1 − 𝑟2)  (7) 

�̃�(×)�̃� = (𝑝1𝑝2, 𝑞1𝑞2, 𝑟1𝑟2)  (8) 

�̃�(/)�̃� = (𝑝1/𝑞1, 𝑝2/𝑞2, 𝑝3/𝑝3)  (9) 

�̃�(×)𝑤 = (𝑝1𝑤, 𝑝2𝑤, 𝑝3𝑤)   (10) 

Definition 4: A TFN �̃�  = (p1, p2, p3), Equation 11 determines the 

defuzzified value a (�̃�): 

𝑎(�̃�) =
𝑝1+𝑝2+𝑝3

3
   (11) 

Definition 5: The distance between �̃� and �̃�  for TFNs �̃�  = (p1, 

p2, p3), and �̃�= (q1, q2, q3) is calculated as follows: 

(�̃�, �̃�) = √
1

3
(𝑝1 − 𝑞1)

2 + (𝑝2 − 𝑞2)
2 + (𝑝3 − 𝑞3)

2   (12) 

Definition 6: Equation 13 finds the best non-fuzzy performance 

(BNP) number through the center of area approach: 

𝑁𝑃𝑖 =
[(𝑟−𝑝)+(𝑞−𝑝)]

3
+ 𝑝, ∀𝑖     (13) 

In the hybrid fuzzy-MOORA technique, the options of decision 

makers are conveyed in relation to linguistic variables set [4, 9]. 

The following steps define the fuzzy embedded MOORA 

technique: 

Step 1: Equation 14 creates the fuzzy decision matrix amongst all 

criteria and alternatives that belong to the TFNs. 

�̃� = [
[𝑝11
𝑎 , 𝑝11

𝑏 , 𝑝11
𝑐 ] [𝑝12

𝑎 , 𝑝12
𝑏 , 𝑝12

𝑐 ] [𝑝1𝑐
𝑎 , 𝑝1𝑐

𝑏 , 𝑝1𝑐
𝑐 ]

⋯ ⋯ ⋯
[𝑝𝑏1
𝑎 , 𝑝𝑏1

𝑏 , 𝑝𝑏1
𝑐 ] [𝑝𝑏2

𝑎 , 𝑝𝑏2
𝑏 , 𝑝𝑏2

𝑐 ] [𝑝𝑏𝑐
𝑎 , 𝑝𝑏𝑐

𝑏 , 𝑝𝑏𝑐
𝑐 ]
]   (14) 

Step 2: The normalized fuzzy decision matrix can be computed 

using Equations 15 to 17. 

𝑝𝑖𝑗
𝑎∗ =

𝑝𝑖𝑗
𝑎

√∑ [(𝑝𝑖𝑗
𝑎)

2
+(𝑝𝑖𝑗

𝑏 )
2
+(𝑝𝑖𝑗

𝑐 )
2
]𝑏

𝑖=1

   (15) 

𝑝𝑖𝑗
𝑏∗ =

𝑝𝑖𝑗
𝑏

√∑ [(𝑝𝑖𝑗
𝑎)

2
+(𝑝𝑖𝑗

𝑏 )
2
+(𝑝𝑖𝑗

𝑐 )
2
]𝑚

𝑖=1

   (16) 

𝑝𝑖𝑗
𝑐∗ =

𝑝𝑖𝑗
𝑐

√∑ [(𝑝𝑖𝑗
𝑎)

2
+(𝑝𝑖𝑗

𝑏 )
2
+(𝑝𝑖𝑗

𝑐 )
2
]𝑏

𝑖=1

   (17) 

Step 3: Equations 18 to 20 then determine the normalized fuzzy 

decision matrix. 

𝑊𝑖𝑗
𝑎 = 𝑟𝑗𝑝𝑖𝑗

𝑎∗   (18) 

𝑊𝑖𝑗
𝑏 = 𝑟𝑗𝑝𝑖𝑗

𝑏∗   (19) 

𝑊𝑖𝑗
𝑐 = 𝑟𝑗𝑝𝑖𝑗

𝑐∗   (20) 

Step 4: The overall fuzzy assessment number �̃�𝑖  can be 

converted to the non-fuzzy value (crisp) then compute the best 

non-fuzzy performance (BNP) using Equation 21 as follows: 

𝐵𝑁𝑃𝑖(�̃�𝑖) =
(𝑞𝑖
𝑐−𝑞𝑖

𝑎)+(𝑞𝑖
𝑏−𝑞𝑖

𝑎)

3
+ 𝑞𝑖

𝑎     (21) 

where �̃�𝑖 = (𝑞𝑖
𝑎, 𝑞𝑖

𝑏 , 𝑞𝑖
𝑐)     

Step 5: Equation 22 can be applied to calculate the overall fuzzy 

assessment value in this step. 

�̃�𝑖 = �̃�𝑖𝑗
+ − �̃�𝑖𝑗

−   (22) 

Where �̃�𝑖𝑗
+ and �̃�𝑖𝑗

− represent the overall assessment value of the 

beneficial and non-beneficial criteria respectively. 

Step 6: Then, in descending order, give ranking to all the 

calculated closeness values wherein the worst alternative refer by 

least closeness value that shows the worst performance and vice 

versa. 

RESULT AND DISCUSSION 

Table 2 represents the experimental layout for laser gear cutting 

together with values of gear quality indicators i.e. mean 

roughness depth, average surface roughness, dimensional 

deviation, and process productivity indicator i.e. material 

removal rate. 

Successful application of the Fuzzy-MOORA technique is 

generally achieved by first applying Fuzzy, this process is called 

fuzzification of alternatives then applying the MOORA 

technique in the final step. To begin the fuzzification process, 

Table 3 defining the linguistic variables used for each criterion is 

adopted for the conversion of the crisp value responses into fuzzy 

numbers (fuzzy set theory) using triangular fuzzy numbers 

(TFN’s).  

In this study, each alternative was mainly identified in terms of 

specific linguistic variables as illustrated in Table 3. This was 

done to calculate the weights of the selected output criteria, 

namely – Rz, Ra, MRR and DD respectively, as shown in Table 

4. The rule of thumb is that linguistic variable used for each 

criterion ranges from 0 to 1 and the incremental change from one 

alternative to the next is with an odd number. In this application, 

only seven linguistic variables are used. In the selection of the 

best criteria to make a decision, the relative weight of each 

criterion is chosen from the linguistic variable used for each 

criterion (Table 3), that is it can range from very low (VL) to very 

high (VH). All criteria, i.e. Rz, Ra, DD and MRR are given a 

“VH” weight by the decision maker in this study as show in Table 

4. The minimization of Rz, Ra and DD is equally important as 

the maximization of MRR.  

The linguistic variable used for each criterion (Table 3) 

conversion into linguistic variable used for each alternative 

(Table 5) is done by multiplying the triangular fuzzy number’s 

(TFN’s) by 10 to have them as whole numbers. It is also 

important to note that the linguistic variables also change, i.e., 

very low (VL) changed to very poor (VP) and so on. 

Table 6 shows the conversion of the experimental data 

alternatives into linguistic variables. This was done by taking the 

difference between maximum and minimum values and dividing 

by 7 (number of linguistic variables) to find a value that is added 

to the minimum number 7 times to arrive at the maximum 

number. The 7 ranges of data sets were then assigned the 
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Variable Input Parameters Experimental Responses 

Run 

No. 

Laser 

Power 

(W) 

Cutting 

Speed 

(m/min) 

Focal 

Position 

(mm) 

Gas 

Pressure 

(bar) 

Mean 

Roughness 

Depth "Rz" 

values (µm) 

Average 

Roughness 

"Ra" values 

(µm) 

Material 

Removal Rate 

"MRR" values 

(mm3/min) 

Dimensional 

Deviation 

"DD" values 

(%) 

1 1500 1 -2.5 13 3.69 0.74 2020.3 1.0264 

2 2500 1 -2.5 13 2.21 0.43 2367.81 1.0268 

3 1500 3 -2.5 13 2.36 0.47 5353.33 1.5244 

4 2500 3 -2.5 13 3.4 0.76 6189.06 0.9088 

5 2000 2 -3.5 10 4.74 0.93 4539.1 1.6582 

6 2000 2 -1.5 10 4.33 0.89 3310.71 1.2305 

7 2000 2 -3.5 16 4.85 0.96 4283.61 1.0342 

8 2000 2 -1.5 16 3.42 0.67 4538.32 1.5174 

9 1500 2 -2.5 10 3.15 0.59 3241.24 1.3131 

10 2500 2 -2.5 10 3.17 0.65 4502.19 0.9945 

11 1500 2 -2.5 16 3.31 0.68 4184.55 1.3074 

12 2500 2 -2.5 16 2.53 0.49 4519.06 0.7351 

13 2000 1 -3.5 13 4.98 1.03 2338.04 1.0174 

14 2000 3 -3.5 13 3.87 0.77 6340.24 1.3445 

15 2000 1 -1.5 13 2.63 0.54 2070.51 1.3494 

16 2000 3 -1.5 13 3.89 0.82 6121.94 1.4065 

17 1500 2 -3.5 13 3.21 0.66 4044.73 1.2608 

18 2500 2 -3.5 13 4.46 0.86 4288.95 1.3899 

19 1500 2 -1.5 13 3.64 0.73 3879.66 1.9142 

20 2500 2 -1.5 13 2.23 0.45 4180.18 0.9525 

21 2000 1 -2.5 10 2.79 0.57 2097.63 0.9588 

22 2000 3 -2.5 10 4.85 0.97 6204.26 1.2931 

23 2000 1 -2.5 16 4.27 0.89 2078.93 0.9925 

24 2000 3 -2.5 16 2.52 0.51 6355.23 0.8919 

25 2000 2 -2.5 13 2.73 0.56 4010.75 1.0574 

26 2000 2 -2.5 13 2.83 0.58 4071.45 0.9831 

27 2000 2 -2.5 13 2.87 0.59 3814.42 1.0582 

28 2000 2 -2.5 13 2.97 0.61 4092.38 1.0636 

29 2000 2 -2.5 13 2.82 0.58 3983.22 1.0131 

Linguistic Variable Triangular Fuzzy Number (TFNs) 

Very Low (VL) (0, 0, 0.1) 

Low (L) (0, 0.1, 0.3) 

Medium Low (ML) (0.1, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.7) 

Medium High (MH) (0.5, 0.7, 0.9) 

High (H) (0.7, 0.9, 1.0) 

Very High (VH) (0.9, 1.0, 1.0) 

Relative Weight of Each Criteria 

Criteria Decision Maker Fuzzy Number 

Rz VH (0.9, 1.0, 1.0) 

Ra VH (0.9, 1.0, 1.0) 

MRR VH (0.9, 1.0, 1.0) 

DD VH (0.9, 1.0, 1.0) 

Linguistic Variable Triangular Fuzzy Number 

(TFNs) 

Very Poor (VP) (0, 0, 1) 

Poor (P) (0, 1, 3) 

Medium Poor (MP) (1, 3, 5) 

Fair (F) (3, 5, 7) 

Medium Good (MG) (5, 7, 9) 

Good (G) (7, 9, 10) 

Very Good (VG) (9, 10, 10) 

Table 1: Experimental Results Corresponding to All Set of Parameters for Laser Machining of Gears [4] 

 

Table 3. Linguistic Variable Used for Each Criterion 

 

Table 4. Relative Weight of Each Criterion 

 

Table 5. Linguistic Variable Used for Each Alternative 

 

linguistic variables: “VG” for the first range, “G” for the second 

range and so on up “VP” for the last range. 

Furthermore, the fuzzy decision matrix compilation was achieved 

through the conversion of the data sets calculated after the 

aforementioned assessment process into the correct triangular 

fuzzy numbers, these results of the conversion process are 

illustrated in Table 7. This is achieved by substituting all the 
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Experimental Responses Fuzzy Linguistic Variables 

Run Rz (µm) Ra (µm) MRR (mm3/min) DD (%) Rz (µm) Ra (µm) MRR (mm3/min) DD (%) 

1 3.69 0.74 2020.3 1.0264 F F VP G 

2 2.21 0.43 2367.81 1.0268 VG VG VP G 

3 2.36 0.47 5353.33 1.5244 G VG G MP 

4 3.4 0.76 6189.06 0.9088 MG F VG G 

5 4.74 0.93 4539.1 1.6582 VP P MG VP 

6 4.33 0.89 3310.71 1.2305 P P MP MG 

7 4.85 0.96 4283.61 1.0342 VP VP F G 

8 3.42 0.67 4538.32 1.5174 F MG MG MP 

9 3.15 0.59 3241.24 1.3131 MG G P F 

10 3.17 0.65 4502.19 0.9945 MG MG MG G 

11 3.31 0.68 4184.55 1.3074 MG MG F F 

12 2.53 0.49 4519.06 0.7351 G VG MG VG 

13 4.98 1.03 2338.04 1.0174 VP VP VP G 

14 3.87 0.77 6340.24 1.3445 MP F VG F 

15 2.63 0.54 2070.51 1.3494 G G VP F 

16 3.89 0.82 6121.94 1.4065 MP MP VG F 

17 3.21 0.66 4044.73 1.2608 MG MG F F 

18 4.46 0.86 4288.95 1.3899 P MP F F 

19 3.64 0.73 3879.66 1.9142 F F F VP 

20 2.23 0.45 4180.18 0.9525 G VG F G 

21 2.79 0.57 2097.63 0.9588 G G VP G 

22 4.85 0.97 6204.26 1.2931 VP VP VG F 

23 4.27 0.89 2078.93 0.9925 P P VP G 

24 2.52 0.51 6355.23 0.8919 G VG VP VG 

25 2.73 0.56 4010.75 1.0574 G G G G 

26 2.83 0.58 4071.45 0.9831 G G VG G 

27 2.87 0.59 3814.42 1.0582 G G MG G 

28 2.97 0.61 4092.38 1.0636 G MG MP G 

29 2.82 0.58 3983.22 1.0131 G G F G 

Run Rz (µm) Ra (µm) MRR 

(mm3/min) 

DD (%) Run Rz (µm) Ra (µm) MRR 

(mm3/min) 

DD (%) 

1 (3, 5, 7) (3, 5, 7) (0, 0, 1) (7, 9, 10) 16 (1, 3, 5) (1, 3, 5) (9, 10, 10) (3, 5, 7) 

2 (9, 10, 10) (9, 10, 10) (0, 0, 1) (7, 9, 10) 17 (5, 7, 9) (5, 7, 9) (3, 5, 7) (3, 5, 7) 

3 (7, 9, 10) (9, 10, 10) (7, 9, 10) (1, 3, 5) 18 (0, 1, 3) (1, 3, 5) (3, 5, 7) (3, 5, 7) 

4 (5, 7, 9) (3, 5, 7) (9, 10, 10) (7, 9, 10) 19 (3, 5, 7) (3, 5, 7) (3, 5, 7) (0, 0, 1) 

5 (0, 0, 1) (0, 1, 3) (5, 7, 9) (0, 0, 1) 20 (7, 9, 10) (9, 10, 10) (3, 5, 7) (7, 9, 10) 

6 (0, 1, 3) (0, 1, 3) (1, 3, 5) (5, 7, 9) 21 (7, 9, 10) (7, 9, 10) (0, 0, 1) (7, 9, 10) 

7 (0, 0, 1) (0, 0, 1) (3, 5, 7) (7, 9, 10) 22 (0, 0, 1) (0, 0, 1) (9, 10, 10) (3, 5, 7) 

8 (3, 5, 7) (5, 7, 9) (5, 7, 9) (1, 3, 5) 23 (0, 1, 3) (0, 1, 3) (0, 0, 1) (7, 9, 10) 

9 (5, 7, 9) (7, 9, 10) (0, 1, 3) (3, 5, 7) 24 (7, 9, 10) (9, 10, 10) (9, 10, 10) (9, 10, 10) 

10 (5, 7, 9) (5, 7, 9) (5, 7, 9) (7, 9, 10) 25 (7, 9, 10) (7, 9, 10) (3, 5, 7) (7, 9, 10) 

11 (5, 7, 9) (5, 7, 9) (3, 5, 7) (3, 5, 7) 26 (7, 9, 10) (7, 9, 10) (3, 5, 7) (7, 9, 10) 

12 (7, 9, 10) (9, 10, 10) (5, 7, 9) (9, 10, 10) 27 (7, 9, 10) (7, 9, 10) (1, 3, 5) (7, 9, 10) 

13 (0, 0, 1) (0, 0, 1) (0, 0, 1) (7, 9, 10) 28 (7, 9, 10) (5, 7, 9) (3, 5, 7) (7, 9, 10) 

14 (1, 3, 5) (3, 5, 7) (9, 10, 10) (3, 5, 7) 29 (7, 9, 10) (7, 9, 10) (3, 5, 7) (7, 9, 10) 

15 (7, 9, 10) (7, 9, 10) (0, 0, 1) (3, 5, 7)      

Table 6. Fuzzy Linguistic Variables 

 

values of the linguistic variables by the triangular fuzzy numbers 

(TFN). The fuzzy decision matrix shown in Table 7, illustrates 

the normalization of the data sets and the outcomes are illustrated 

in Table 8. The weighted normalized fuzzy decision matrix was 

obtained by multiplying the specified weights of each criterion 

with their corresponding values. 

The data sets given in Table 8 were then converted into crisp 

value from the application of Equation 21 and shown in Table 9 

Table 7. Fuzzy Decision Matrix 

 

to complete the application of Fuzzy. MOORA is applied to give 

the overall assessment values were computed using Equation 22 

and listed in Table 10. 

As per Table 10, based on the overall assessment value, 

Experiment number 24 has secured the first rank, that indicates 

Fuzzy-MOORA based optimum parameters for laser machining 

of gear with the best values of gear quality and process 

productivity indicators. 
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Run Rz (µm) Ra (µm) MRR 

(mm3/min) 

DD (%) Run Rz (µm) Ra (µm) MRR 

(mm3/min) 

DD (%) 

1 (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) (0.63, 0.9, 1) (0.63, 0.9, 1) 16 (0.09, 0.3, 0.5) (0.09, 0.3, 0.5) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) 

2 (0.81, 1, 1) (0.81, 1, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) 17 (0.45, 0.7, 0.9) (0.45, 0.7, 0.9) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) 

3 (0.63, 0.9, 1) (0.81, 1, 1) (0.09, 0.3, 0.5) (0.09, 0.3, 0.5) 18 (0, 0.1, 0.3) (0.09, 0.3, 0.5) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) 

4 (0.45, 0.7, 0.9) (0.27, 0.5, 0.7) (0.63, 0.9, 1) (0.63, 0.9, 1) 19 (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) (0, 0, 0.1) (0, 0, 0.1) 

5 (0, 0, 0.1) (0, 0.1, 0.3) (0, 0, 0.1) (0, 0, 0.1) 20 (0.63, 0.9, 1) (0.81, 1, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) 

6 (0, 0.1, 0.3) (0, 0.1, 0.3) (0.45, 0.7, 0.9) (0.45, 0.7, 0.9) 21 (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) 

7 (0, 0, 0.1) (0, 0, 0.1) (0.63, 0.9, 1) (0.63, 0.9, 1) 22 (0, 0, 0.1) (0, 0, 0.1) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) 

8 (0.27, 0.5, 0.7) (0.45, 0.7, 0.9) (0.09, 0.3, 0.5) (0.09, 0.3, 0.5) 23 (0, 0.1, 0.3) (0, 0.1, 0.3) (0.63, 0.9, 1) (0.63, 0.9, 1) 

9 (0.45, 0.7, 0.9) (0.63, 0.9, 1) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) 24 (0.63, 0.9, 1) (0.81, 1, 1) (0.81, 1, 1) (0.81, 1, 1) 

10 (0.45, 0.7, 0.9) (0.45, 0.7, 0.9) (0.63, 0.9, 1) (0.63, 0.9, 1) 25 (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) 

11 (0.45, 0.7, 0.9) (0.45, 0.7, 0.9) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) 26 (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) 

12 (0.63, 0.9, 1) (0.81, 1, 1) (0.81, 1, 1) (0.81, 1, 1) 27 (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) 

13 (0, 0, 0.1) (0, 0, 0.1) (0.63, 0.9, 1) (0.63, 0.9, 1) 28 (0.63, 0.9, 1) (0.45, 0.7, 0.9) (0.63, 0.9, 1) (0.63, 0.9, 1) 

14 (0.09, 0.3, 0.5) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7) 29 (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) (0.63, 0.9, 1) 

15 (0.63, 0.9, 1) (0.63, 0.9, 1) (0.27, 0.5, 0.7) (0.27, 0.5, 0.7)      

Run Rz (µm) Ra (µm) MRR 

(mm3/min) 

DD (%) Run Rz (µm) Ra (µm) MRR 

(mm3/min) 

DD (%) 

1 0.490 0.490 0.033 0.843 16 0.297 0.297 0.937 0.49 

2 0.937 0.937 0.033 0.843 17 0.683 0.683 0.49 0.49 

3 0.843 0.937 0.843 0.297 18 0.133 0.297 0.49 0.49 

4 0.683 0.49 0.937 0.843 19 0.49 0.49 0.49 0.033 

5 0.033 0.133 0.683 0.033 20 0.843 0.937 0.49 0.843 

6 0.133 0.133 0.297 0.683 21 0.843 0.843 0.033 0.843 

7 0.033 0.033 0.49 0.843 22 0.033 0.033 0.937 0.49 

8 0.49 0.683 0.683 0.297 23 0.133 0.133 0.033 0.843 

9 0.683 0.843 0.133 0.49 24 0.843 0.937 0.937 0.937 

10 0.683 0.683 0.683 0.843 25 0.843 0.843 0.49 0.843 

11 0.683 0.683 0.49 0.49 26 0.843 0.843 0.49 0.843 

12 0.843 0.937 0.683 0.937 27 0.843 0.843 0.297 0.843 

13 0.033 0.033 0.033 0.843 28 0.843 0.683 0.49 0.843 

14 0.297 0.49 0.937 0.49 29 0.843 0.843 0.49 0.843 

15 0.843 0.843 0.033 0.49      

Run Yi = Rz + Ra + MRR + DD Rank Run Yi = Rz + Ra + MRR + DD Rank 

1 1.857 21 16 2.02 20 

2 2.75 12 17 2.347 14 

3 2.92 8 18 1.41 24 

4 2.953 7 19 1.503 22 

5 0.883 29 20 3.113 3 

6 1.247 26 21 2.563 13 

7 1.4 25 22 1.493 23 

8 2.153 18 23 1.143 27 

9 2.15 19 24 3.653 1 

10 2.893 9 25 3.02 4 

11 2.347 14 26 3.02 4 

12 3.4 2 27 2.827 11 

13 0.943 28 28 2.86 10 

14 2.213 16 29 3.02 4 

15 2.21 17    

Table 8. Product of Relative Weights of Each Criterion and Normalized Fuzzy Decision Matrix 

Table 9. Crisp Values for Weighted Normalized Fuzzy Decision Matrix 

 

Table 10. MOORA Application: Overall Assessment Value 

 

CONCLUSION 

This paper has reported an implementation of Fuzzy-MOORA as 

a solution to multicriteria decision making (MCDM) problem 

related to simultaneous optimization of quality and productivity 

during laser machining of miniature gears. Fuzzy-MOORA 

integrated hybrid optimization resulted in optimum values of 

laser machining parameters i.e.  laser power 2000 W, cutting 
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speed 3 m/min, focal position -2.5 mm, and gas pressure 16 bar 

for a ready industrial reference to obtain the best values of surface 

quality of miniature gears and productivity of the process. The 

future research directions include hybridizing Fuzzy with other 

suitable optimization technique for laser machining of gears, 

comparing Fuzzy based hybrid optimization techniques, and 

using other hybrid and soft computing techniques for 

optimization in gear manufacturing processes. It is hoped that the 

details of Fuzzy-MOORA implementation i.e. methodology 

followed and results obtained in this work, will facilitate the 

researchers to solve complex decision-making problems for a 

wide range of manufacturing processes and systems. 
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