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INTRODUCTION 

The characteristics of industry significantly influence its 

maintenance policy [1]. Process industry is considered a com-

plex system including various parts and subsystems, which are 

intertwined with each other. A failure of one part may result in 

the whole system disruption. However, we cannot simply halt 

the main system  to perform a maintenance task. Ideally, per-

forming maintenance tasks should follow a predetermined 

schedule, which has considered various factors of the system. 

Such consideration should also be applied in determining the 

maintenance strategy for the supporting system. In other words, 

the maintenance strategy for the supporting system must follow 

the pattern of the main system. However, finding an appropriate 

maintenance strategy is a challenging task. The maintenance 

strategy referred to in this study is ‘what tasks on which ma-

chine’ and ‘when will it be executed’. Therefore, determining a 

maintenance strategy for each system in process industries is 

important and must be considered systemically [2]. 

Researches on maintenance strategy has been applied in various 

disciplines. However, most of the literatures emphasized more 

its application to the main system while paying less attention to 

the supporting system. Telford et al. [3] proposed a condition 

based maintenance program in the oil and gas industry and 

focused only on the components of the main system. Braaksma 

et al. [4] discussed asset maintenance in five process industries 

but the study only emphasized on the main systems. Ighravwe 

et al. [5] proposed a model to optimize the maintenance work-

force in a brewery industry with a focus on its three main pro-

duction lines. Due to the lack of studies in maintenance strate-

gy for the supporting system, this research addresses the system 

perspective to develop a maintenance strategy that considers 

the supporting system. 

There are two types of maintenance strategies. The first one is 

corrective maintenance (CM) or repair. CM is conducted after a 

failure occurs and intends to restore the overall functioning of 

the system. The second type is preventive maintenance (PM). 

PM is conducted even if the system is still running normally in 

order to avoid failure or breakdown. PM can be a condition-

based or time-based approach. While the condition-based PM 

is determined according to the results of the system’s state 

monitoring; the time-based PM or planned preventive mainte-

nance (PPM) is conducted at scheduled times or periodically 

[6]. In this study, the time interval of PPM will be analyzed for 

each machine before determining the well-suited maintenance 

strategy for all machines. The time interval of PPM will affect 

the proportion of CM and PPM. The right proportion between 

CM and PPM will lead to the optimal maintenance cost of each 

machine. However, if there is more than one machine working 

in parallel, determining the PPM time interval of each machine 

must consider resource availability. The optimal PPM’s time 

interval for a machine may not necessarily provide the lowest 

cost. Therefore, comprehensive analysis of PPM’s time interval 

for all machines is required.  
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Monte Carlo Simulation (MCS) is one of the favorite methods 

in the maintenance studies [7] - [9]. It becomes popular because 

of its flexibility in handling the uncertainty of non-linear prob-

lems. However, MSC has some limitations. MSC can only 

address a small space of problems and cannot show the exact 

optimal point. To tackle such limitation, some studies com-

bined MSC with other methods known as hybrid simulation-

analytical modeling [10] and [11]. 

In fact, analyzing a complex system requires an improvised 

method in order to develop a simpler, more natural and more 

efficient model. Therefore, it is of advantageous to integrate 

two or more simulation methods [12]. Combining two or more 

simulation approaches in addressing such issue is called a hy-

brid simulation model. Hybrid simulations enhance the under-

standing of complex systems because problems can be investi-

gated from different perspectives. 

There are four types of method combination which are catego-

rized as a hybrid [13]: a) Sequential: two or more different 

single method execute sequentially (but only once), a result of 

one method becomes the input to the other; b) Enrichment: 

there is only one dominant method and the others are to support 

or to enrich the analysis; c) Interaction: there are two or more 

single methods that are equally important and interact cyclical-

ly; and d) Integration: Combining two or more methods so 

perfectly that it is difficult to know when one method ends and 

when another method starts. 

In general, there are four general approaches in building simu-

lation model which are MCS, Discrete Event Simulation 

(DES), System Dynamics (SD), and Agent Based Modeling 

(ABM). Compared to MCS and DES, the use of SD and ABM 

in maintenance studies is less popular [14]. ABM can be ruled 

out because it is a relatively new method. On contrary, MCS 

and DES are popular in maintenance studies because some 

events in the maintenance system are discrete, such as an unex-

pected failure. Moreover, the maintenance system can be 

viewed from a system perspective because there are many con-

tinuous and interacting processes, such as the availability of 

maintenance resources and the financial aspects [15]. While 

MCS is only able to solve problems with low to medium ab-

straction, SD can reach higher abstractions. SD is more appro-

priate for analyzing complex systems that are characterized by 

feedback loops. Therefore, SD can provide a system perspec-

tive in overcoming a problem. SD has also been used in several 

maintenance studies as demonstrated in [16] and [17]. Thus, the 

use of SD will eliminate the limitation of MCS. 

Hybrid simulations are still rarely exploited to solve mainte-

nance problems. In the last five years, there are only two stud-

ies found using hybrid simulations. Oleghe and Salonitis [18] 

used a hybrid simulation (SD and DES) as a decision-making 

tool in improving Total Productive Maintenance (TPM). Then, 

Linnéusson et al. [19] used a hybrid simulation (Multi Objec-

tive Optimization (MOO)-SD-DES) to support the development 

of maintenance strategies.  

Considering the above mentioned individual advantage of MCS 

and SD, in this study MCS and SD are applied simultenously to 

analyze the influence of maintenance strategy in the process 

industry. The combination of MCS and SD in tackling mainte-

nance issues is rarely used, and to the best of our knowledge, 

the integration of these two methods to develop maintenance 

strategy in the process industries has not been explored.  There-

fore, in the proposed hybrid simulation work, the methods of 

MCS and SD are combined in such a way that MCS is used to 

find the possible alternatives of PPM time interval for each 

machine, and SD then reviews the results of the MCS using the 

perspective of the whole system to find the optimal solution.  

The problem situation being modeled is a packing department 

of a well-known flour mill in Indonesia. The packing depart-

ment is an important supporting system of the flour mill.  This 

department has three types of machines: scales, carousels, and 

sewing. From the initial observation, sewing machines were 

chosen as the research subject because these machines have the 

highest rate of failure. The packing department consists of  13 

sewing machines. Based on the data obtained, the critical com-

ponents of the sewing machines are scissors and throat plate. If 

there is a problem with the scissors, it may cause knitting jams, 

imprecise cut of yarn, and in the worst case, break the shear 

drive. Similarly, if there is a problem with the throat plate, it 

may cause knitting failure, and even break the throat plate. The 

packing department is one of the important links in the flour 

mill because it is strongly related to the distribution process. 

The factory could not distribute its products if the packaging 

process is hampered. 

The flour mill is categorized as a process industry. Therefore, 

the determination of maintenance strategy in each department 

will affect the whole system. The hybrid simulation is used to 

analyze the influence of the maintenance strategy in the pack-

ing department  to ensures that the best strategy is determined 

from a system perspective. Thus, the response variable in this 

study is the system revenue. The decision variable is the PPM 

time interval of each component of the individual sewing ma-

chine. 

Reliability is one indicator in determining the effectiveness of 

the maintenance strategy. The concept of Reliability Centered 

Maintenance (RCM) has been widely used in various studies 

[20] and [21]. This RCM concept is adapted in the proposed 

hybrid simulation study using MCM and DES sequentially to 

accommodate 13 sewing machines that work in parallel. Sec-

ondary data from the past record of flour mill is used in MCS 

to obtain the input data for the SD model. To address the evi-

dence unavailability of direct link between the PPM time inter-

val of each component of the individual sewing machine and 

the revenue as the financial indicator, the SD model is devel-

oped to determine maintenance strategy according to the best 

trade-off condition between those two variables. 

A sequential hybrid simulation (MCS and SD) is believed to be 

able to solve the problem of determining optimal preventive 

maintenance schedules with an integrative system perspective. 

Thus, the prosed study is not only an appropriate to solve the 

stated problem but also can contribute to providing knowledge 

on the use of hybrid simulations in maintenance-related studies. 

This paper consists of three more sections. Section 2 describes 

the detailed methods we have used. To provide a complete 

overview of our hybrid simulation method, we divided Section 

2 into four sub-sections: data collection, research design, MCS 

process, and SD process.  Section 3 describes the details of the 

process industry investigated, MCS results, SD results, and the 

discussion of the results. Finally, Section 4 summarizes the 

conclusions and provides some premises for future research. 

METHODS 

This section is divided into four sub-sections: data collection, 

research design, Monte Carlo simulation process, and System 

Dynamics process.  
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Data Collection 

Secondary data related to the operations of the packing depart-

ment in 2018 was collected from the flour mill using the hap-

hazard approach. The data was selected and reorganized as 

needed. From the results of observations and data analysis us-

ing Risk Priority Number (RPN), the research subject was se-

lected. It is found that the scissors and the throat plate of the 

sewing machines are the most frequent causes for the system 

failure, thus they are selected as the research subjects. After-

wards, the data was sorted and processed to obtain the cause of 

failure, time-to-failure (TTF), time-to-repair (TTR), and 

maintenance cost that would be used in MCS. In addition, more 

comprehensive financial data was also collected to run the SD 

simulation. 

Research Design 

Distribution fitting was carried out for the historical data of 

each sewing machine using Weibull++. Then, the distribution 

of each sewing machine was used in the MCS spreadsheet. 

Experiments using PPM with various time intervals data were 

carried out to find the bath-up curve of each sewing machine 

from the perspective of maintenance cost. The bath-up curve 

would be the basis for generating the alternatives of PPM time 

interval for each machine.  

The SD approach started with developing a conceptual model 

in the form of a causal loop diagram (CLD). CLD shows the 

relationship between the elements in the system. The complexi-

ty of the system observed is reflected in the number of loops in 

the CLD. The CLD was then translated to be a stock flow dia-

gram (SFD) as a basis for running the simulation. STELLA 

software was used to run the SD simulation. The simulation 

model had been validated before it was used to run the im-

provement scenarios. The improvement scenarios were generat-

ed using the reference of each sewing machine’s bath-up curve. 

The result is an optimal maintenance strategy for all sewing 

machines in the packing department from the system perspec-

tive. The proposed hybrid concept is categorized as a sequential 

hybrid simulation and is shown in Figure 1. 

Monte Carlo Simulation 

The application of MCS is to set the PPM time interval based 

on random events. MCS provides an approach to estimate the 

total maintenance cost per hour rate. Technically, MCS is a 

technique in choosing random numbers (as inputs) from proba-

bility   distribution  to  run  the  simulation   process  [22]. Ran-

dom numbers are used as indicators of systems failure which is 

represent the real system condition. This method shows us how 

the random variation of  the failure  probability (F(t)) influ-

ences the reliability of the modeled system. Figure 2 illustrates 

the random variation of the input parameters and their influ-

ence. 

Moreover, it also shows how a set of input variables (X1, X2, 

X3) becomes a set of output variables (Y1, Y2) through the 

simulation process. The simulation will generate data used to 

represent probability distributions, reliability predictions, toler-

ance zones, and confidence intervals [23]. In this study, the 

input variables are TTR and TTF of each component of each 

sewing machine. These input variables are used in the simula-

tion process of some possibilities of the PPM time interval. The 

expected simulation output is the total maintenance cost per 

hour rate.  

MCS process is presented in detail to allow this simulation to 

be reproduced. There are seven steps used in this process. Each 

step is described in detail as follows:  

1. Check the distribution fitness  of  TTR and TTF data by 

examining the AvGOF, AvPlot, dan LKV value.  

2. Determine the PPM time interval (Tp) and the number of 

replications required (N). In this study, the PPM time inter-

vals for the scissors is 10 hours while the PPM time inter-

vals for the throat plates was 100 hours. The number of  

iterations (N) for each Tp is 500 times.  

3. The failure time (Ti) is calculated using Equation (1) if the 

TTF distribution is Weibull 3, or using Equation (2) if the 

TTF distribution  is Weibull 2. F(t) is  the probability of 

failure. F(t) in the equation is replaced with a random num-

ber between 0 -1.  

 

 

 

 

 

4. Compare Ti and Tp. When Ti > Tp, the component succeeds 

to operate without failure. However, the component reaches 

its maintenance time (Ts) and it needs to maintain for the 

Tppm. In this study, Tppm for the scissors and the throat are 

0.05 hours (3 minutes) and  0.75 hours (45 minutes), respec-

tively. These  were  determined  based on field observations.  

Figure 1. The Concept of the Hybrid Simulation in This Study 

Figure 2. Schematic Showing the Principal of Stochastic 

Uncertainty Propagation 

(1) 

(2) 
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When Ti < Tp, the component fails to operate for Tp and can 

only operate during its failure time (Tf). Consequently, it 

needs to repair for corrective maintenance time (Tcm). The 

Tcm is calculated  either using Equation (3) (for Weibull 3) or 

Equation (4) for Weibull 2. M(t) is the probability of restor-

ing components in the available time. M(t) in Equation (3) 

and (4) are replaced with a random number between 0 - 1. 

 

 

 

 

 

 

5. Compute the total cost per hour. When Ti > Tp, the preven-

tive cost (Cppm) is calculated using Equation (5). 

 

 

 

 

 

When Ti < Tp, the corrective maintenance cost (Ccm) is calcu-

lated. The equation used to calculate the corrective cost 

shown in Equation (6).  

 

 

 

 

6. Compute the total component operation time (Topr) and total 

simulation time (Tclock). After deriving the value of Ti, Tcm, 

and Tpm, the Topr and Tclock are determined using Equation (7) 

and (8), respectively.  

 

 

 

 

7. Conduct the cost analysis. This analysis is based on three 

cost variables i.e., corrective maintenance cost per hour (Ccm/

hour), preventive maintenance cost per hour (Cppm/hour), and 

the total maintenance cost per hour (TC/hour). These three 

variables are calculated using the following equations. 

 

 

 

 

Cost analysis is the most important stage of this study because 

it allows us to know the trade-off between determined mainte-

nance time interval (Tp) and the total maintenance cost per 

hour (TC/hour). Consequently, the maintenance schedule  are 

set to achieve the most efficient cost. 

System Dynamics Process 

The first step after understanding the problem situation is to 

build the mental model or the conceptual model. The proposed 

tool for building a mental model or a conceptual model in the 

SD is a CLD. It is suitable segment in the SD process because 

the CLD is able to represent interdependencies and feedback 

processes which are the main concept of SD [24]. A CLD con-

sists of variables connected by arrows showing causal relation-

ships among the variables. Furthermore, at each causal relation-

ship, the polarity is determined. The polarity can be positive or 

negative depending on how the dependent variable respond to 

the independent variables (see Table 1). 

At least there must be a loop in a CLD, either a reinforcing loop 

or a balancing loop. A reinforcing loop occurs if the 

multiplication of polarity signs shows a positive result. This 

indicates that the variables in the loop will grow exponentially. 

A balancing loop occurs if the multiplication of polarity signs 

shows a negative result. A balancing of loop will lead to a 

steady condition. Complexity occurs when there is a 

combination of reinforcing loops and balancing loops so the 

results cannot be predicted.  

After a CLD has been established, it is then translated into an 

SFD. Although a CLD is a powerful tool in representing the 

system thinking, the CLD does not represent a stock and flow 

concept, which is one of the core concepts of SD. A CLD 

shows qualitative relationships while SFD contains quantitative 

operational variables that make it possible to run a simulation. 

A stock becomes a major element in an SFD because it 

represents the status of the observed system. This is represented 

by a rectangle. In addition, there is an inflow represented by a 

pipe that leads to the stock and outflow represented by a pipe 

coming out of the stock. Other important elements are valves, 

clouds, and converters. Valves serve to control the flow. Clouds 

show the source and the sink. Converters are components of a 

system of which the values are obtained from other components 

of the system through computational procedures. In a system 

simulation, one of the advantages of SD is the flexibility in 

swapping the dependent and independent variables to see the 

system behavior. 

RESULT AND DISCUSSION 

The process flow in the packing department begins with the 

process of weighing the flour at the scales section. Then, it is 

distributed on the carousels which act as intermediaries so that 

the flour can easily get into the package. After the flour  fills 

the sack, it is sewn with sewing machines (see Figure 3). Data 

shows that these sewing machines are the most frequent cause 

of downtime in the packing department (see Figure 4). 

However, the number of failures alone often does not represent 

the risk of failure as a whole. Therefore, it is necessary to 

involve an analysis of the risk of failure with RPN which is the 

result of multiplication of occurrence (O), severity (S), and 

detection (D). Each component consists of 10 scales. In 

occurrence, scale 1 represents ‘never occurs’ and scale 10 

represents ‘always occurs’. In severity, scale 1 represents ‘no 

impact’ and scale 10 represents ‘a very severe impact’. In 

detection, scale 1  represents  ‘very easy detection’ and scale 10 

represents ‘a very severe impact’. In detection, scale 1 

represents ‘very easy detection’ and scale 10 represent “it 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Symbol Interpretation 

 
X Y

+
If X increases, then Y increases 

If X decreases, then Y decreases 

 
X Y

-
If X increases, then Y decreases 

If X decreases, then Y increases 

Table 1. Polarity Explanation 
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cannot be detected’. The results of the RPN calculation of each 

machine show that the sewing machine still ranks first (see 

Table 2). Furthermore, a bigger problem may arise if the flour 

silo is unable to accommodate the output of the milling process. 

Therefore, the critical components of a sewing machine are 

scissors and throat plate. The causes of downtime and 

preventive action can be seen in Table 3. 

Distribution Fitting 

The distribution fitting was conducted on TTF and TTR of each 

type of component: scissors and throat plate. The distributions 

of TTF of each sewing machine which was caused by the 

failure of scissors are dominated by Weibull 3. Whereas the 

distributions of TTF of each sewing machine which was caused 

by the failure of the throat plate are dominated by Weibull 2. 

The result of distribution fitting can be seen in Table 4 and 

Table 5. 
After finding the distribution of TTF of each component in 

each machine, it continued by looking at the TTR distribution 

of each component in each machine. TTR distributions of the 

scissors can be seen in Table 6 and TTR distributions of the 

throat plates can be seen in Table 7. Even though, the TTR 

distributions of the scissors of each sewing machine are similar, 

researchers still insisted on using the specific distribution of 

each sewing machine in the simulation. This is necessary 

because the TTR distributions of the throat plate in each sewing 

machine have a high variation.  

Monte Carlo Simulation 

As explained in the Method section, MCS will be used to build 

bath-up curves that show the relationship between the PPM 

time interval and the maintenance cost. Since the simulation 

clock (Tclock) is not the same for each experiment, we used 

total maintenance cost/hour (TC/hour) as a comparable 

indicator. The total maintenance cost/hour is the sum of PPM 

cost/hour and CM cost/hour. Therefore, the maintenance cost/

hour  represents  the total  maintenance cost for maintaining the 

Table 2. RPN of Each Machine 

No. Machine O S D RPN Rank 

1 Scale 4 8 7 224 2 

2 Carousel 6 5 5 150 3 

3 Sewing 8 6 7 336 1 

Table 3. The Cause of Downtime and The Preventive Action  

Component Cause of downtime Preventive action 

Scissors Knitting jam Lubricating 

Imprecise cut of yarn Cleaning and resetting 

Broken scissors drive Replacing the compo-
nent 

Throat plate Knitting failure Tightening the bolts  
and fixing the position 

Broken throat plate Replacing the compo-
nent 

Figure 3. The Process under Study 

Figure 4. The Amount of Downtime for Each Type of Machine  

Sewing Machine TTF Distribution 

201 Weibull 3 (2,536; 4,76; 100,65) 

202 Weibull 3 (3,5641; 79,005; 85,906) 

203 Weibull 3 (3,024; 68,377; 95,02) 

204 Weibull 3 (1,9146; 31,448; 10,05) 

205 Weibull 3 (2,032; 56,621; 98,41) 

206 Weibull 3 (2,9058; 61,004; 105,39) 

306 Weibull 2 (6,9662; 167,61) 

305 Weibull 3 (2,0036; 47,989; 106,72) 

301 Weibull 3 (1,525; 31.32; 106,39) 

406 Weibull 3 (1,9859; 36,323; 99,851) 

405 Weibull 3 (1,3457; 31,151; 110,32) 

404 Weibull 2 (9,0213; 151,76) 

401 Weibull 3 (3,2875; 69,903; 86,987) 

Table 4. Scissors’ TTF Distributions 

Table 5. Throat Plate’s TTF Distributions  

Sewing Machine TTF Distributions 

201 Weibull 2 (8,738; 1823,9) 

202 Weibull 2 (15,633; 1652,4) 

203 Weibull 2 (12,455; 1564,1) 

204 Weibull 2 (4,7969; 1623,5) 

205 Weibull 2 (4,1983; 1757,4) 

206 Weibull 2 (10,275; 1778,5) 

306 Weibull 3 (4,5783; 740,55; 735,97) 

305 Weibull 3 (2,6929; 983,69; 834,53) 

301 Weibull 3 (21,384; 4337,7; -2565,3) 

406 Weibull 2 (7,9644; 1269) 

405 Weibull 2 (14,678; 1585) 

404 Weibull 2 (15,122; 1695,5) 

401 Weibull 2 (6,2994; 1476,3) 
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component for each PPM time interval. It is called a bath-up 

curve because the maintenance cost/hour curve has a pattern 

like a bath-up or a boat. When PPM time interval is very tight, 

PPM will be done more frequently and cause high PPM costs. 

On the other hand, when the PPM time interval gets longer, the 

PPM cost will decrease but, CM cost starts to increase. The 

longer the PPM time interval, the higher the CM cost (see 

Figure 5 and Figure 6). Therefore, the optimal PPM time 

interval is obtained when the total sum of PPM cost and CM 

cost is at the lowest condition. The bath-up curves of the 

maintenance cost/hour  for  sewing  machine 201 can be seen in 

Figure 7 and Figure 8. The same process was duplicated for all 

sewing machines.  

As seen in Figure 7, the lowest maintenance cost/hour for 

maintaining the scissors in sewing machine 201 is at the PPM 

time interval of 80 hours. Then, the maintenance cost/hour 

starts to rise again because of the increase of CM cost/hour. 

Moreover, as seen in Figure 8, the lowest maintenance cost/

hour for maintaining the throat plate in sewing machine 201 is 

at the PPM time interval of 1.000 hours. After 1.000 hours, the 

maintenance cost/hour starts to increase again because of the 

increase of CM cost/hour. 

Figure 5. The Movement of CM Cost and PPM Cost 

for Scissors in Sewing Machine 201  

Figure 6. The Movement of CM Cost and PPM Cost for Throat 

Plate in Sewing Machine 201 

Sewing Machine TTR Distributions 

201 Weibull 2 (3,7647; 0,26953) 

202 Weibull 2 (3,3611; 0,2587) 

203 Weibull 3 (3,024; 68,377; 95,02) 

204 Weibull 2 (3,6787; 0,24535) 

205 Weibull 2 (3,6997; 0,24342) 

206 Weibull 2 (3, 7579; 0,24111) 

306 Weibull 2 (3,5445; 0,23705) 

305 Weibull 2 (3,3463; 0,24169) 

301 Weibull 2 (3,7317; 0,24826) 

406 Weibull 2 (3,401; 0,25598) 

405 Weibull 2 (3,5079; 0,25315) 

404 Weibull 2 (3,2573; 0,23953) 

401 Weibull 3 (1,6994; 0,10171; 0,11548) 

Table 6. Scissors’ TTR Distributions  

Table 7. Throat Plate’s TTR Distributions 

Sewing Machine TTR Distributions 

201 Weibull 2 (10,664; 1,9794) 

202 Weibull 2 (7,01; 1,8549) 

203 Weibull 3 (2,5478; 1,4658; 0,75688) 

204 Weibull 2 (3,4834; 1,9418) 

205 Weibull 2 (4,3108; 1,5691) 

206 Weibull 2 (5,7284; 2,0756) 

306 Weibull 2 (4,017; 1,8552) 

305 Weibull 2 (5,1359; 1,5312) 

301 Weibull 2 (7,5109; 1,7851) 

406 Weibull 2 (6,1479; 1,9171) 

405 Weibull 2 (7,0137; 1,6046) 

404 Weibull 2 (12,968; 1,5683) 

401 Weibull 2(7,0218; 1,7081) 

Figure 7. The Bath-Up Curve of Maintenance Cost/Hour for 

Scissors in Sewing Machine 201  

Figure 8. The Bath-Up Curve of Maintenance Cost/Hour for 

Throat Plate in Sewing Machine 201 
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The result of the MCS study is not only the bath-up curves that 

can provide information about PPM time intervals and their 

relationship with the maintenance costs, but also the reliability 

indicator for each PPM time interval that will be used in SD. 

The example of reliability indicators for the scissors and the 

throat plate in sewing machine 201 can be seen in Table 8 and 

Table 9. A summary of the MCS study for the optimal PPM 

time intervals of each component in each sewing machine can 

be seen in Table 10.  

System Dynamics 

CLD represents the mental model or the conceptual model of 

the SD simulation. CLD describes the relationship among the 

elements which are involved in the system under observation. 

The proposed CLD for the maintenance system study can be 

seen in Figure 9.  Afterward, the CLD was translated to become 

an SFD as is shown in Figure 10.  

There are two reinforcing loops in the CLD. The first one is 

Revenue > (+) Maintenance Budget > (-) PPM time interval > 

(+) Failure rate > (-) Reliability > (+) Production rate > (+) 

Revenue. This relationship can be explained as the revenue of 

the system will be allocated as a maintenance budget to pay the 

PPM cost. With a high allocation of the maintenance budget, 

PPM can be done more frequently so that it is done at a shorter 

interval. PPM time interval will affect the failure rate. The 

more frequent PPM is done, the lower the failure rate. A low 

failure rate will increase reliability. The higher reliability will 

cause an increase in the production rate which will increase the 

revenue as well. 

The second reinforcing loop is Maintenance Budget > (-) PPM 

time interval > (+) Failure rate > (+) CM cost > (-) 

Maintenance Budget. This relationship explains that the income 

from the system will affect the maintenance budget allocation 

of the packing department. The higher the maintenance budget 

allocation, the more frequent PPM can be done,  thus the 

shorter intervals are performed. The relationship also shows 

that PPM will affect the failure rate. The more frequent PPM is 

done, the  lower  the f ailure rate. A low failure  rate will reduce  

Table 8. The Reliability and The Maintenance Cost/Hour of 

Each PPM Time Interval for Scissors in Sewing Machine 201  

PPM Time interval 

(hours) 

Reliability 

(rn) 

TC/hour 

(Rp.) 

50 1,00 10.114,85 

60 1,00 8.430,47 

70 0,991 7.397,09 

80 0,973 6.476,48 

90 0,936 6.541,55 

Table 9. The Reliability and The Maintenance Cost/Hour of 

Each PPM Time Interval for Throat Plate in Sewing Machine 

PPM Time interval 

(hours) 

Reliability 

(rn) 

TC/hour 

(Rp.) 

700 1,00 1.453,80 

800 1,00 1.272,24 

900 0,997 1.169,18 

1000 0,998 1.030,35 

1100 0,985 1.058,38 

Table 10. The Summary of The MCS Result for Scissors and 

Throat Plate in All Sewing Machines 

Sewing Machine 
Optimal PPM 
time interval for 
scissors (hours) 

Optimal PPM 
time interval for 
throat plate 
(hours) 

201 80 1000 

202 120 1200 

203 110 1100 

204 70 700 

205 140 700 

206 110 1200 

306 120 900 

305 90 900 

301 70 1500 

406 90 700 

405 90 600 

404 110 1300 

401 100 500 

Figure 9. The Causal Loop Diagram (CLD) 

Maintenance budget

PPM time interval

Revenue

Failure rate

Reliabil ity

Production rate

CM cost
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Figure 10. The Stock Flow Diagram (SFD) 
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CM cost. Low CM cost will not significantly reduce the 

maintenance budget that has been allocated for PPM. 

Although both of these loops are reinforcing loops of which 

result can be predicted, the model provides information about 

improvement scenario that will provide the highest exponential 

revenue increase of the proposed improvement scenario 

candidate. Therefore, it does not make the SD become 

meaningless. Figure 10 represents the simplification of the SFD 

with involving only two sewing machines. Revenue in the CLD 

was set as ‘stock’ in the SFD. The inflow is sales, while the 

maintenance budget allocation is the outflow. This system will 

review the revenue at the end of the simulation period. 

Reliability, which is one indicator in the maintenance system, 

was chosen in this study because it can capture the condition of 

13 sewing machines that work in parallel. The parallel 

reliability in the stock flow diagram is calculated by Equation 

(12).  

 

Validation 

Model validation was done by running the simulation on the 

initial condition and comparing the results with historical data 

using the paired t-test with α = 5%. The test result shows that 

there is no significant difference between the results of the 

simulation model and the historical data. Therefore, the model 

is confirmed valid. The real data set used as a basis for 

validation cannot be displayed in this paper at the request of the 

organization.  

Iprovement Scenario 

There are three possible improvement scenarios generated to 

determine the best maintenance strategy from a system 

perspective. Scenario 1 uses the optimal interval time for all 

machines obtained from the MCS study without considering the 

availability of the resource (see Table 10). If the resource is not 

available or insufficient at the PPM execution, a penalty fee 

will be charged. Furthermore, scenario 2 considers the 

availability of the resource so that it may not use the optimal 

PPM time interval, but choose a PPM time interval that still 

shows a low maintenance cost/hour by referring to the bath-up 

curve. Meanwhile, scenario 3 only applies to CM. The resource 

mentioned could mean spare parts or maintenance personnel. 

Simulations for the three scenarios were carried out for a year 

and the results can be seen in Table 11. 

The best scenario is considered from the potential revenue of 

the packing department. As can be seen in Table 11, the highest 

potential revenue is obtained if the packing department runs 

scenario 2: setting the PPM time intervals based on the 

consideration of resource availability. However, the revenues 

do not reflect the real conditions because this study only used a 

sample of one type of machine involving two types of 

components. Revenue is just an indicator to justify which 

scenario is best. Table 10 shows the PPM time interval used in 

scenario 2 for each component in each sewing machine. Then, 

the maintenance schedule can be arranged based on Table 12. 

CONCLUSIONS 

The proposed method has been proven  able to determining the 

best maintenance strategy of a department in the process 

industry. In the packing department of the flour mill, the 

sewing machine is one of the most frequent  machines 

experienced downtime. The critical components of this 

machine are scissors and throat plate. An examinationof the 

maintenance strategy was  conducted on 13 sewing machines 

that work in parallel.  This was carried out by an ‘in-depth’ 

study for each machine and the results were reviewed from a 

system perspective. The ‘in-depth’ study used MCS, whereas 

the system’ perspective study implemented SD. The result of 

MCS study became the input of SD so that it could be calleda 

hybrid simulation. In SD, simulations were performed on three 

improvement scenarios. The simulations were run for a year to 

see which scenario that could provide the highest potential 

revenue. As a result, scenario 2 was chosen as the best 

scenario. This scenario suggests that the maintenance schedule 

should focus on arranging the maintenance period of the 

scissors and throat plate components for  all machines by 

considering the resource availability. 

The results of this study can be applied directly by the flour 

mill observed and the methods used can provide insight on how 

to use a hybrid simulation in a maintenance study. The 

guidance for further research is to involve all machines and all 

components in a department. The more data collected, the more 

comprehensive the SFD model is. Therefore, it is highly 

recommended for companies to adopt maintenance information 

systems such as the Computerized Maintenance Management 

System (CMMS).  
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NOMENCLATURE 

Tp PPM time interval of each component of each 

machine 

N Number of replications 

Ti Failure time 
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Tp PPM time interval of each component of each 

machine 

N Number of replications 

Ti Failure time 

F(t) Probability of failure 

γ The location parameter of Weibull distribution 

η The scale parameter of Weibull distribution 

β The shape parameter of Weibull distribution 

Ts Tp when Ti > Tp 

Tppm TTR when Ti > Tp 

Tf Ti when Ti < Tp 

Tcm TTR when Ti < Tp 

M(t) Probability of restoring component in available time 

Cppm PPM cost 

Ccm CM cost 

Topr Total operation time 

Tclock Total simulation time 

TC/hour Total maintenance cost per hour 

Rp Reliability parallel 
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