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ABSTRACT 

Selecting appropriate suppliers is critical for healthcare organizations to ensure high-quality, reliable, and sustainable patient care 
services. In an increasingly competitive environment, hospitals must optimize supplier selection not only based on economic factors 
but also by integrating environmental and social sustainability considerations. is study aims to create a strong system for choosing 
sustainable suppliers in healthcare by combining fuzzy-based multi-criteria decision-making (MCDM) methods with Grey Forecasting 
GM(1,1) to handle uncertainty and changes in performance over time. e proposed framework applies the Fuzzy Best-Worst Method 
(F-BWM) to determine the relative importance of sustainability criteria, while the Fuzzy Additive Ratio Assessment (F-ARAS) method 
is used to rank suppliers based on these weighted criteria. Grey Forecasting GM(1,1) is employed to predict supplier performance for 
future periods, with forecasting accuracy evaluated through Mean Absolute Percentage Error (MAPE). All supplier forecasts achieved 
MAPE values below 5%, indicating very high prediction reliability. Empirical results from a case study at a general hospital in Indonesia 
confirm that social aspects, such as patient safety and reputation, are prioritized over economic and environmental considerations. 
Practically, the proposed framework enables healthcare institutions to holistically evaluate suppliers, specifically reducing risks related 
to supply disruptions and quality inconsistencies. e model performs best under conditions of limited or uncertain data availability, 
where supplier historical performance trends can be leveraged to forecast future reliability and sustainability outcomes. e 
prioritization of sustainability criteria yields social criteria (weight = 0.3703) as the most important, followed by economic (0.3609) and 
environmental (0.2688) criteria. 
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INTRODUCTION 

Sustainable procurement in healthcare supply chains has become increasingly critical as global health systems face 
heightened pressure to ensure reliable access to essential medicines and medical equipment while simultaneously 
meeting environmental and social responsibility standards. e COVID-19 pandemic, regulatory tightening, and 
growing public expectations for sustainability have exposed vulnerabilities in conventional supplier selection 
practices. In this context, hospitals must not only ensure cost-effective procurement but also prioritize resilience, 
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ethical sourcing, and long-term sustainability within their supply networks. Consequently, developing robust, 
sustainability-oriented supplier selection frameworks tailored to the unique complexities of the healthcare sector is 
a pressing academic and practical challenge. A critical consideration in healthcare organizations is the availability of 
essential facilities and resources, particularly the consistent provision of comprehensive pharmaceutical products 
and medical equipment to support the delivery of patient care. e quality of drugs is determined by the composition 
of the drug, while the availability of drugs is closely related to the quality of the supplier. erefore, in an effort to 
improve the quality of service to consumers, especially in the provision and service of patient drugs, supplier 
selection is one of the factors that must be considered [1]. Supplier selection is important decisions in every 
organization because they have a direct impact on the profitability of the company's competitive position [2].  

As sustainability concerns have intensified globally, numerous studies have proposed frameworks for sustainable 
supplier selection across industries. Hosseini et al. [3] emphasized the importance of integrating social and 
environmental factors into procurement decisions to mitigate reputational and operational risks. Similarly, Franco 
and Alfonso-Lizarazo [4] identified the strategic benefits of sustainable sourcing in enhancing long-term 
competitiveness. Bai and Sarkis [5] argued that sustainability-driven supplier selection supports broader corporate 
responsibility initiatives, while Ageron et al. [6] highlighted how neglecting sustainability dimensions can expose 
organizations to regulatory penalties and supply chain disruptions. Although these studies collectively underscore 
the necessity of sustainability in supplier selection, they predominantly focus on the manufacturing and retail 
sectors, with limited attention to the healthcare industry. 

Incorporating various aspects of social and environmental sustainability into supply chain management is known as 
sustainable supply chain management, or SSCM. rough the triple-bottom-line idea, which integrates 
environmental, social, and economic factors into organizational decision-making, sustainability can be characterized 
as an intergenerational philosophy that uses resources from today without compromising the requirements of future 
generations [7]. Choosing the correct supplier for a manufacturer is a crucial component of SSCM since it will 
significantly lower purchasing costs, boost customer satisfaction, and improve competitiveness. One of the most 
important procedures is the sustainable supplier selection process, which is generally seen as a crucial management 
duty. Selecting appropriate suppliers is challenging because it requires the simultaneous evaluation of quantitative 
and qualitative factors, which oen present conflicting priorities. e performance and adaptability of each link in a 
supply chain determine its overall efficiency. To reduce costs and improve competitive advantage, businesses should 
not only choose the finest suppliers but also distribute demand among them as efficiently as possible [8]. 

e selection, development, and maintenance of suppliers a process frequently referred to as supplier performance 
management (SPM) are among the purchasing function's most crucial goals.  In order to achieve this goal, 
purchasing must also collaborate closely with suppliers to improve current capabilities and create new ones.  Aer a 
contract is awarded, monitoring performance is one method to find the best vendors. Supplier measurement and 
management is an important part of the purchasing cycle. Continuous measurement is needed to identify 
opportunities for improvement or suppliers that are not performing well [9]. Supplier performance needs to be 
monitored regularly to ensure the company is able to maintain long-term relationships with suppliers. 

Goren [10] has created decision-making frameworks for choosing sustainable suppliers by employing the Fuzzy 
Decision-Making Trial and Evaluation Laboratory (F-DEMATEL) approach and ranking the computation results 
using weights as input from the Taguchi loss function. Using the Fuzzy Delphi approach to choose appropriate 
evaluation criteria for VMI supplier selection, the Fuzzy Step-wise Weight Assessment Ratio Analysis (SWARA) 
method to determine the relative importance weights of the evaluation criteria, and the Fuzzy Complex Proportional 
Assessment of Alternatives (COPRAS) method to compare, rank, and choose the best supplier, Sumrit's study [11] 
created an MCDM framework. Nayeri [12] suggested three key ideas for supplier selection: resilience, sustainability, 
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and responsiveness.  To do so, the current study developed a Multi-Stage Decision-Making Framework (MSDMF) 
to select potential suppliers. 

Rezaei [13] introduced the Best Worst Method (BWM), a new multi-criteria decision-making technique that uses 
pairwise comparisons to determine the weights of criterion and alternatives with regard to various criteria while 
requiring less data. Pairwise comparison errors can be successfully corrected by BWM [13]. Supplier selection is 
oen an MCDM problem where a small number of suppliers are evaluated using a small number of criteria. 
Sustainable supplier selection, in particular, entails identifying and using a number of criteria, many of which are 
incompatible with one another. In addition, supplier selection problems and processes oen involve ambiguity and 
uncertainty because the exact values for all criteria used in the supplier selection process may not be available or 
accessible.

Zadeh's fuzzy set theory has been incorporated into a number of MCDM techniques [14]. e benefit of applying 
fuzzy set theory to the supplier selection process is its ability to minimize subjective, ambiguous, and imprecise 
information that shapes human opinions, attitudes, and actions [15]. Most of the methods proposed to achieve 
economical and sustainable supplier selection over the past two decades are MCDM models defined in a fuzzy or 
grey environment [16]. 

Although previous studies have advanced sustainable supplier selection models, several critical gaps remain. First, 
existing frameworks predominantly evaluate supplier performance at a single point in time, overlooking the dynamic 
nature of supplier capabilities across multiple periods. In reality, supplier attributes such as quality, reliability, and 
compliance may evolve over time, necessitating an approach that can accommodate such variability. Second, research 
specifically addressing sustainable supplier selection within the healthcare sector is limited, despite its unique 
challenges related to regulatory requirements, product criticality, and supply chain volatility. 

To address these gaps, this study poses the following central research question: How can a sustainable supplier 
selection framework be developed for the healthcare sector that integrates multi-period performance evaluation 
under conditions of uncertainty? Accordingly, the objective of this study is to develop and validate a comprehensive 
framework that integrates fuzzy-based multi-criteria decision-making (MCDM) methods and Grey Forecasting 
GM(1,1) to support sustainable supplier selection in healthcare supply chains. 

is study proposes a comprehensive framework that integrates grey forecasting and fuzzy MCDM methods for 
measuring supplier performances based on sustainable criteria. Criteria and sub-criteria of sustainability are 
identified in the early stages of the evaluation process based on a literature review and judgment of the DMs. In 
previous research, F-BWM has been successfully applied in complex decision-making environments, such as airport 
selection, where multiple conflicting criteria must be evaluated with limited and uncertain data (Tanrıverdi et al., 
2022). Inspired by its effectiveness in handling similar multi-criteria problems, this study adopts F-BWM to 
prioritize sustainable supplier selection criteria in the healthcare sector. e F-BWM is considered better than the 
analytical hierarchy process (AHP) with fewer pairs of comparisons. Suppliers are subsequently assessed using the 
fuzzy additive ratio assessment (F-ARAS) method, a structured methodology, created by Heidary Dahooie et al. 
(2022) to assess the influence of high-performance human resource practices on the success of innovation in SMEs. 
ese two newly developed methods are becoming popular due to their effective problem-solving abilities [18].  

e main contributions of this paper are as follows: 
a. Creating a comprehensive evaluation framework for sustainable supplier selection requires an integration of

the three pillars of sustainability: economic, environmental, and social dimensions. The economic pillar
encompasses considerations such as price, quality, reliability, and logistics efficiency. The environmental pillar
focuses on green practices and effective waste management, while the social pillar emphasizes reputation,
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transparency, training, and both occupational and patient safety. Together, these elements provide a holistic 
approach to selecting healthcare suppliers. 

b. Extending the application of sustainable supplier selection frameworks to the healthcare sector, addressing 
sector-specific challenges such as regulatory compliance, product criticality, and inventory volatility. The
framework is tailored to the healthcare context by incorporating key industry-specific challenges, including
strict regulatory requirements, the critical nature of medical supplies, and fluctuating inventory demands.

c. Incorporating supplier performance trends over multiple periods to predict future reliability and sustainability
outcomes. Rather than relying solely on current data, the model integrates historical performance trends to 
provide a more accurate prediction of future supplier reliability and sustainability.

d. Enhancing decision-making under uncertainty by integrating the Fuzzy Best-Worst Method (F-BWM) for 
criteria weighting and the Fuzzy Additive Ratio Assessment (F-ARAS) for supplier ranking. F-BWM generates 
criteria weights consistently by considering expert opinions, while F-ARAS evaluates supplier performance 
based on these weights. The integration of these two methods has never been used before in the context of
sustainable supplier selection in the healthcare sector.

e. The integration of F-BWM and F-ARAS methods with Grey Forecasting GM(1,1) in a case study at UNS 
Hospital significantly enhances the accuracy of decision-making in the selection of drug suppliers on an 
ongoing basis. This approach facilitates the objective assessment of criteria weights and supplier rankings amid 
data uncertainty while also enabling predictions of future supplier performance based on historical data. 
Beyond improving the accuracy and stability of procurement decisions, this model represents a 
methodological innovation, as it has not been previously applied in an integrated manner for supplier selection 
within the healthcare sector.

METHODS 

e framework proposed in this study integrates the Fuzzy Multi Criteria Decision Making (F-MCDM) approach 
with Grey Forecasting GM(1,1) to support sustainable supplier selection based on criteria determined by decision-
makers and supplier performance data across multiple periods (see Figure 1). e F-MCDM component consists of 
two core methods: the Fuzzy Best-Worst Method (F-BWM) for criteria weighting and the Fuzzy Additive Ratio 
Assessment (F-ARAS) for evaluating supplier performance. F-BWM was selected over conventional methods such 
as AHP or ANP due to its ability to reduce the number of pairwise comparisons to 2n–3, ensure higher consistency 
in decision matrices, and effectively incorporate uncertainty through fuzzy logic an advantage especially useful in 
environments where judgments are expressed linguistically or imprecisely. Unlike ANP, F-BWM does not assume 
interdependence among criteria, which suits the structure of this study. Aer the criteria weights are derived via F-
BWM, supplier alternatives are evaluated using F-ARAS, which was chosen over more common MCDM methods 
like TOPSIS or VIKOR due to its computational simplicity, intuitive score-based logic, and compatibility with fuzzy 
assessments without relying on distance measures to an ideal solution. Based on the historical fuzzy evaluations of 
supplier performance using F-ARAS, annual performance scores are generated for each supplier. ese annual scores 
then form the time series input for the Grey Forecasting model GM(1,1), which is employed to predict future supplier 
performance trends. e output of GM(1,1) does not modify the original scores or weights but provides forecasted 
scores that inform long term strategic decisions. Hence, this integrated approach allows for both short term 
evaluation and future oriented selection, ensuring robustness and sustainability in supplier decision making. 
Supplier performance uncertainty over several periods is predicted using the Grey Forecasting GM(1,1) method. 
is method can provide good predictions even with limited or incomplete data [19], so it can be used in situations 
where the available historical data is limited, is relatively easy to understand and implement, can handle a variety of 
types of data, and has adaptive properties that allow it to quickly respond to changes in data trends or patterns. 
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Figure 1. Proposed Integrated Grey Forecasting and F-MCDM Framework 

 

 
 
 
 
 
 

 

Weighting Criteria with Fuzzy BWM 

Rezaei [13] introduced the best-worst method (BWM) as an efficient means of solving MCDM problems. Compared 
to full pairwise comparison, the basic idea behind this approach is to simplify the process by reducing the number 
of comparisons from n2 to 2n−3. Traditional BWM only handles crisp values. BWM is capable of dealing with 
MCDM problems in fuzzy environments [20]. e results are significantly closer to the actual views of decision-
makers when the comparison criteria are described as linguistic labels with triangular fuzzy numbers used to 
represent linguistic words. 

e principal steps of F-BWM are as follows [21]: 
Step 1: Identify a set of criteria {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛}  
Step 2: Among the set of criteria from Step 1, determine which criterion is best (most important) and worst (least 
important). 
Step 3: For the best criterion, conduct a fuzzy reference comparison. e best-to-others (BO) fuzzy vector will fuzzy 
preference of the best criterion over the criteria (j = 1, 2, …, n), and it is proven that 𝑎𝑎�𝐵𝐵𝐵𝐵 = (1, 1, 1).  
Step 4: Conduct a fuzzy reference comparison for the worst criterion, do a fuzzy reference comparison. e others-
to-worst (OW) fuzzy vector is �̃�𝐴𝑊𝑊 = (𝑎𝑎�1𝑊𝑊,𝑎𝑎�2𝑊𝑊 , … , 𝑎𝑎�𝑛𝑛𝑊𝑊)𝑇𝑇, where 𝑎𝑎�𝑗𝑗𝑊𝑊 shows the preference of criteria (j = 1, 2, .., 
n) over the worst and proven criteria, and 𝑎𝑎�𝑊𝑊𝑊𝑊 = (1, 1, 1).
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Step 5: Determine the ideal fuzzy weight for the criteria. According to Guo and Zhao [20], vector members BO and 
OW can be used to construct the following nonlinear programming models:     
Equation (1) formulates the nonlinear programming model of the Fuzzy Best-Worst Method (Fuzzy BWM), which 
is designed to determine the optimal fuzzy weights of evaluation criteria. is model seeks to minimize the 
maximum deviation (𝜍𝜍̃) between the fuzzy preference ratios provided by the decision-maker and the actual ratios of 
fuzzy weights. e constraints ensure the consistency of the fuzzy pairwise comparisons. 

min 𝜍𝜍̃ ∗ (1) 

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �(𝑙𝑙𝐵𝐵

𝑤𝑤,𝑚𝑚𝐵𝐵
𝑤𝑤 ,𝑢𝑢𝐵𝐵

𝑤𝑤)

�𝑙𝑙𝑗𝑗
𝑤𝑤,𝑚𝑚𝑗𝑗

𝑤𝑤 ,𝑢𝑢𝑗𝑗
𝑤𝑤�
− �𝑙𝑙𝐵𝐵𝑗𝑗 ,𝑚𝑚𝐵𝐵𝑗𝑗 ,𝑢𝑢𝐵𝐵𝑗𝑗�� ≤ (𝑘𝑘∗, 𝑘𝑘∗, 𝑘𝑘∗)

�
�𝑙𝑙𝑗𝑗
𝑤𝑤,𝑚𝑚𝑗𝑗

𝑤𝑤 ,𝑢𝑢𝑗𝑗
𝑤𝑤�

�𝑙𝑙𝑊𝑊
𝑤𝑤 ,𝑚𝑚𝑊𝑊

𝑤𝑤  ,𝑢𝑢𝑊𝑊
𝑤𝑤 �
− �𝑙𝑙𝑗𝑗𝑊𝑊,𝑚𝑚𝑗𝑗𝑊𝑊,𝑢𝑢𝑗𝑗𝑊𝑊�� ≤ (𝑘𝑘∗, 𝑘𝑘∗, 𝑘𝑘∗)

∑ 𝑅𝑅�𝑊𝑊𝚥𝚥��𝑛𝑛
𝑗𝑗=1 = 1 

𝑙𝑙𝑗𝑗𝑤𝑤 ≤ 𝑚𝑚𝑗𝑗
𝑤𝑤  ≤ 𝑢𝑢𝑗𝑗𝑤𝑤  

𝑙𝑙𝑗𝑗𝑤𝑤 ≥ 0          
 𝑗𝑗 = 1,2, … ,𝑛𝑛 

Roles and Interpretation of parameters: 
(𝑙𝑙𝐵𝐵𝑤𝑤,𝑚𝑚𝐵𝐵

𝑤𝑤 ,𝑢𝑢𝐵𝐵𝑤𝑤) : the fuzzy weight of the best criterion 
(𝑙𝑙𝑊𝑊𝑤𝑤 ,𝑚𝑚𝑊𝑊

𝑤𝑤  ,𝑢𝑢𝑊𝑊𝑤𝑤 ) : the fuzzy weight of the worst criterion 
�𝑙𝑙𝑗𝑗𝑤𝑤,𝑚𝑚𝑗𝑗

𝑤𝑤 ,𝑢𝑢𝑗𝑗𝑤𝑤� : the fuzzy weight of criterion j, which is to be determined 

�𝑙𝑙𝐵𝐵𝑗𝑗 ,𝑚𝑚𝐵𝐵𝑗𝑗 ,𝑢𝑢𝐵𝐵𝑗𝑗� : the fuzzy preference of the best criterion over criterion j, provided by the decision maker 
�𝑙𝑙𝑗𝑗𝑊𝑊,𝑚𝑚𝑗𝑗𝑊𝑊,𝑢𝑢𝑗𝑗𝑊𝑊� : the fuzzy preference of criterion j over the worst criterion 
ς� ∗ : the upper bound of allowable deviation to maintain consistency 
𝑅𝑅�𝑊𝑊𝚥𝚥�� : a defuzzification function used to normalize fuzzy weights such that their sum equal 1 

where ς� = �𝑙𝑙ς� ,𝑚𝑚ς� ,𝑢𝑢ς��: 𝑙𝑙ς� ≤ 𝑚𝑚ς� ≤ 𝑢𝑢ς�    , ς�∗ = (𝑘𝑘∗, 𝑘𝑘∗, 𝑘𝑘∗);𝑘𝑘∗ ≤  𝑙𝑙ς�  . By solving Equation (1), the optimal weights 
(𝑤𝑤1∗,𝑤𝑤2∗, … ,𝑤𝑤𝑛𝑛∗) and optimal consistency index (CI), ς�∗, can be obtained. e consistency ratio (CR) can be 
calculated according to the formula 𝐶𝐶𝑅𝑅 =  ς�∗ 𝐶𝐶𝐶𝐶⁄ . e fuzzy weights are then defuzzified using Equation (2) [20]: 

𝑅𝑅�𝑤𝑤𝑗𝑗� =  
𝑤𝑤𝑗𝑗
𝐿𝐿+4𝑤𝑤𝑗𝑗

𝑀𝑀+𝑤𝑤𝑗𝑗
𝑢𝑢

6 (2) 

F-ARAS for Alternative Evaluation

The F-ARAS approach was first introduced in the literature by [22]. Based on a fundamental relative comparison 
between alternative and optimal values, the method is simple to implement. The steps of the procedure are as 
follows:  
Step 1: Make a fuzzy decision-making matrix using Equation (3). The columns contain criteria while the rows 
represent m alternatives. 

𝑋𝑋� = [𝑥𝑥�01 … 𝑥𝑥�0𝑛𝑛 ⋮⋱⋮ 𝑥𝑥�𝑚𝑚1 … 𝑥𝑥�𝑚𝑚𝑛𝑛]; 𝑖𝑖 = 0,𝑚𝑚;   𝑗𝑗 = 1,𝑛𝑛 (3) 

where 𝑥𝑥�𝑖𝑖𝑗𝑗 is the performance value of the fuzzy value of the ith alternative in terms of criteria j, and  𝑥𝑥�0𝑗𝑗  is the 
optimal value of criterion j. If the optimal value of criterion j is not known, then: 

𝑥𝑥�0𝑗𝑗 = max�
𝑖𝑖
𝑥𝑥�𝑖𝑖𝑗𝑗 ,   𝑖𝑖𝑖𝑖     max�

𝑖𝑖
𝑥𝑥�𝑖𝑖𝑗𝑗     is better, and 
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𝑥𝑥�0𝑗𝑗 = min�
𝑖𝑖
𝑥𝑥�𝑖𝑖𝑗𝑗 ,     if      min�

𝑖𝑖
𝑥𝑥�𝑖𝑖𝑗𝑗     is better (4) 

Step 2: Determine the normalized decision-making matrix using Equation (5): 

𝑋𝑋� = �𝑥𝑥�01 … 𝑥𝑥�0𝑛𝑛 ⋮⋱⋮ 𝑥𝑥�𝑚𝑚1 … 𝑥𝑥�𝑚𝑚𝑛𝑛� ; 𝑖𝑖 = 0,𝑚𝑚;   𝑗𝑗 = 1,𝑛𝑛 (5) 

The criteria where the maximum value is preferred are normalized as follows (Equation 6) :  

𝑥𝑥�𝑖𝑖𝑗𝑗 =  𝑥𝑥�𝑖𝑖𝑗𝑗
∑ 𝑥𝑥�𝑖𝑖𝑗𝑗𝑚𝑚
𝑖𝑖=0

(6) 

The criteria where a minimum value is desired are normalized using a two-step process using Equation (7) : 

𝑥𝑥�𝑖𝑖𝑗𝑗 = 1  𝑥𝑥�𝑖𝑖𝑗𝑗�   (7) 

Equation (7) describes the normalization process for criteria where lower values are preferred, typically referred to 
as cost-type criteria. 

𝑥𝑥�𝑖𝑖𝑗𝑗  : the original fuzzy evaluation of alternative i under criterion j, represented as a triangular fuzzy number 
(TFN) with lower (l), middle (m), and upper (u) value. 

𝑥𝑥�𝑖𝑖𝑗𝑗  : the normalized fuzzy value obtained by applying the reciprocal transformation to each component of 
TFN. 

Step 3: Calculate the weighted normalized matrix using Equation (8). 

∑ 𝑤𝑤𝑗𝑗 = 1𝑛𝑛
𝑗𝑗=1  (8) 

All criterion-weighted normalized values are determined as follows (Equation (9)) :  

𝑥𝑥�𝑖𝑖𝑗𝑗 =  𝑥𝑥�𝑖𝑖𝑗𝑗𝑤𝑤�𝑗𝑗    ;                          𝑖𝑖 = 0,𝑚𝑚;  (9) 

Step 4: Calculate the value of the optimality function using Equation (10). 

�̃�𝑆𝑙𝑙 =  ∑ 𝑥𝑥𝚤𝚤𝚥𝚥�𝑛𝑛
𝑗𝑗=1                                                ; 𝑖𝑖 =,𝑚𝑚 (10) 

where �̃�𝑆𝑙𝑙  is the value of the optimality function of the ith alternative. Defuzzification utilizing Equation (11) is 
necessary because the values found are not clear.    

𝑆𝑆𝑖𝑖 =  1
3
�𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑖𝑖� (11) 

Equation (12) is used to determine alternative utility rates Equation (12). 

𝐾𝐾𝑖𝑖 = 𝑆𝑆𝑖𝑖
𝑆𝑆0

 𝑖𝑖 = 0,𝑚𝑚; 
(12) 

where the ideal criteria values are Si and S0. Ki is calculated as [0, 1]. Therefore, the values can be sorted in ascending 
order. 

Grey Forecasting GM(1,1) Method 

The GM(1,1) Grey Forecasting model has been widely used to solve prediction problems with small data. The 
following steps are used to obtain GM(1,1) [23]: 
Step 1 : Define the non-negative original data sequence as shown in Equation (13). 

𝑥𝑥(0) = (𝑥𝑥(0)(1), 𝑥𝑥(0)(2), … , 𝑥𝑥(0)(𝑛𝑛))                                                                         (13) 

The accumulated generation operation (AGO) is then used to generate the sequence 𝑥𝑥(1), using Equation (14) and 
Equation (15). 
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𝑥𝑥(1) = (𝑥𝑥(1)(1), 𝑥𝑥(1)(2), … , 𝑥𝑥(1)(𝑛𝑛) (14) 

where 𝑥𝑥(1)(𝑘𝑘) =  ∑ 𝑥𝑥(0)(𝑘𝑘)𝑘𝑘
𝑖𝑖=1 , 𝑘𝑘 = 1,2, … ,𝑛𝑛 (15) 

Step 2: The sequence 𝑧𝑧(1) is obtained by applying the mean consecutive neighbor’s operator on 𝑥𝑥(1). 

𝑧𝑧(1) = {𝑧𝑧(1)(2), 𝑧𝑧(1)(3), … , 𝑧𝑧(1)(𝑛𝑛)}  (16) 

where  𝑧𝑧(1)(𝑘𝑘) = 0,5𝑥𝑥(1)(𝑘𝑘) + 0,5𝑥𝑥(1)(𝑘𝑘 − 1),     𝑘𝑘 = 2,3, … ,𝑛𝑛  (17) 

Step 3: To determine the rate of change in the accumulated data sequence with respect to time, a first-order 
differential equation can be used to construct the grey GM(1,1) model over 𝑥𝑥(1). 

𝑑𝑑𝑥𝑥(1)(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝑎𝑎𝑥𝑥(1)(𝑡𝑡) = 𝑏𝑏 (18) 

The developmental coefficient is named after parameter a, which reflects the improvement in the trend of the 
sequence. The coordination parameter, b, indicates the change in relationships. 

Step 4: Based on Equation (18), the original form of GM(1,1) for discrete values can be defined in Equation (19), 
and the basic form of the model based on z is given in Equation (20).  

𝑥𝑥(0)(𝑘𝑘) + 𝑎𝑎𝑥𝑥(1)(𝑘𝑘) = 𝑏𝑏 (19) 

𝑥𝑥(0)(𝑘𝑘) + 𝑎𝑎𝑧𝑧(1)(𝑘𝑘) = 𝑏𝑏 
(20) 

Step 5: The parameters a and b in Equation (19) and Equation (20) = must be estimated by minimizing squared 
errors, i.e., least squares estimation, as shown in Equation (21). 

�𝑎𝑎�
𝑏𝑏�
� = [𝐵𝐵𝑇𝑇𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑌𝑌 (21) 

where :   𝐵𝐵 =  

⎣
⎢
⎢
⎡−[𝑥𝑥(1)(1) + 𝑥𝑥(1)(2)]/2  1
−[𝑥𝑥(1)(2) + 𝑥𝑥(1)(3)]/2  1

…  …
−[𝑥𝑥(1)(𝑛𝑛 − 1) + 𝑥𝑥(1)(𝑛𝑛)]/2 1⎦

⎥
⎥
⎤

𝑌𝑌 = [𝑥𝑥(0)(2), 𝑥𝑥(0)(3), … , 𝑥𝑥(0)(𝑛𝑛)] 𝑇𝑇. 

In Equation (21), B and Y denote the accumulated matrix and constant vector, respectively. 

The temporal response function can be calculated by solving Equation (22), as illustrated below: 

𝑥𝑥�(1)(𝑘𝑘 + 1) = �𝑥𝑥(1)(1) − 𝑏𝑏�

𝑎𝑎�
� 𝑒𝑒−𝑎𝑎𝑘𝑘 + 𝑏𝑏�

𝑎𝑎�
(22) 

Step 6:  This model can be used to forecast the value of the original data sequence in the future. The model's initial 
condition is   𝑥𝑥(0)(1) = 𝑥𝑥�(0)(1). Because 𝑥𝑥�(0)(𝑘𝑘 + 1) = 𝑥𝑥�(1)(𝑘𝑘 + 1) − 𝑥𝑥�(1)(𝑘𝑘), the expected value after h periods 
can be computed using the following Equation (23):  

𝑥𝑥�(0)(𝑛𝑛 + ℎ) = (1 − 𝑒𝑒𝑎𝑎�) �𝑥𝑥(0)(1) − 𝑏𝑏�

𝑎𝑎�
� 𝑒𝑒−𝑎𝑎�(𝑛𝑛+ℎ) (23) 

Case Study 

Sustainable supplier selection is an important step in ensuring that healthcare services are not only medically 
effective but also socially and environmentally responsible. One way of providing optimal health services to the 
community is through good-quality medicines. To get good-quality medicines, hospitals must purchase medicines 
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Table 1. Sustainable Supplier Selection Criteria 
Criteria Sub-criteria Description References 

Economy 
(K1) 

Price (C1) Affordable products [24], [25], [26], [27] 
Quality (C2) Standard of products and services 

provided 
[24], [28], [25], [26], 
[29], [27], [30] 

Reliability (C3) Relationship of trust between purchaser 
and supplier 

[24], [27] 

Payment terms (C4) Financial convenience related to 
payments 

[24], [29] 

Production capacity (C5) Existing human, financial, and material 
resource capabilities related to product 
manufacturing 

[31] 

Lead time (C6) Timely delivery [32] 
Supplier location (C7) Location of suppliers who provide supply 

materials (related to transportation costs) 
[33] 

Environment 
(K2) 

Green design and 
purchasing (C8) 

Eco-friendly practices incorporated at the 
design and purchasing stage 

[34], [35], [29], [16], 
[27] 

Environmental management 
system (C9) 

Structure, planning, and implementation 
of supplier policies for environmental 
protection. 

[25], [26], [29], [16] 

Green packaging and Labelling 
(C10) 

Supplier's ability to incorporate 
environmental considerations into 
packaging and labelling. 

[29], [31], [2], [27] 

Environmental pollution and 
waste management (C11) 

Raw materials are such that wastage and 
pollution are minimized when producing 
the product 

[30], [31] 

Pollution control (C12) Efforts to prevent pollution [24], [26], [31], [16], [2], 
[27], [36] 

Social (K3) Reputation (C13) Perception of the supplier in the work 
environment. Is it viewed as trustworthy 
or not? 

[24], [31], [16] 

Information disclosure 
(C14) 

Important details regarding procedures 
and goods are shared by suppliers. 

[24], [25], [29],  [31], 
[27] 

from the best suppliers. This case study analyzes drug purchasing at one of the general hospitals in Surakarta, Central 
Java, Indonesia. The hospital, which is located in an eight-story building and is a Type C general hospital, has ten 
polyclinic specialists, 63 specialist doctors, 33 general practitioners, one general dentist, and more than 300 non-
medical personnel. There are over 190 treatment beds within the hospital. 

Drug purchasing decisions are made by the Hospital Procurement Section, which consists of three decision-makers 
(DMs), namely the head of the Goods and Services Division with 3 years of experience (DM 1), the head of the 
General and Engineering Department with 26 years of experience (DM 2), and the head of the Procurement 
Department with 3 years of experience (DM 3). The criteria and sub-criteria were initially identified through a 
review of relevant literature and subsequently refined through consultations with decision-makers. Consensus was 
reached through iterative discussions and decision makers' reviews, ensuring that all selected criteria were 
contextually appropriate and comprehensible for the intended analysis. They agreed on the items shown in Table 1. 
The DMs consider 14 potential companies as medication suppliers. Due to hospital and company data privacy 
reasons, these suppliers are anonymous and identified using codes S1–S14. About a quarter of these suppliers are 
domestic companies that produce and supply various types of medicines. The main criteria and sub-criteria for 
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Table 1. (cont.) 
Criteria Sub-criteria Description References 

Social (K3) Training after purchase (C15) Medical staff education regarding the 
unique items provided. 

[24], [26], [29] 

Work safety (C16) The requirements for occupational health 
are part of the company's procurement 
procedure. 

[24], [25], [26], [29], 
[27], [16], [2] 

Patient safety guarantee (C17) Efforts to prevent dangers to patients [31] 

Table 2. Fuzzy Linguistic Scale [21],[37] 

Linguistic Terms Membership Function Consistency Index (CI) 
Equally important (EI) 
Weakly important (WI) 
Fairly important (FI) 
Very important (VI) 
Absolutely important (AI) 

(1,1,1) 
(2/3,1,3/2) 
(3/2,2,5/2) 
(5/2.3,7/2) 
(7/2,4,9/2) 

3.00 
3.80 
5.29 
6.69 
8.04 

Table 3. Fuzzy Linguistic Assessments by Decision-Makers 

Best Criterion Worst Criterion Economy Environment Social 
DM1 Economy EI FI FI 

Social FI FI Ei 
DM2 Social VI VI Ei 

Economy EI FI VI 
DM3 Economy EI FI WI 

Environment FI EI WI 

Table 4. Fuzzy And Crisp Criterion Weights 

K1 K2 K3 
DM1 (0.4653;0.4653;0.5607) (0.2720;0.2980;0.4383) (0.1908;0.1908;0.2562) 
DM2 (0.1767;0.1767;0.1767) (0.1584;0.2468;0.2893) (0.5485;0.5913;0.5913) 
DM3 (0.3391;0.4418;0.4418) (0.1998;0.2603;0.2603) (0.2451;0.3391;0.3486) 
Fuzzy Weight .3270;0.3613;0.3931)   (0.2101;0.2684;0.3293)   (0.3281;0.3737;0.3987) 
Crips Weight .3609   0.2688   0.3703 

 

 
 
 
 
 
 

RESULT AND DISCUSSION 

F-BWM Result

F-BWM was used to weight the main criteria and sub-criteria. The DMs were asked to identify the best and worst
criteria in their opinion and to express their best-to-others and others-to-worst choices using the linguistic scale
presented in Table 2.  The values presented in Table 3 were then translated into triangular fuzzy numbers. These
numbers were then used to generate the F-BWM model shown in Equation (24) using LINGO 18.0 software. The
fuzzy weights of the criteria were calculated and are shown in Table 4, along with the crisp weights after the fuzzy
weights were defuzzified.

HAYATI ET AL. / JURNAL OPTIMASI SISTEM INDUSTRI, VOL. 24 NO. 1 (2025) 63-83

72      Hayati et al. 10.25077/josi.v24.n1.p63-83.2025                                                                                                    DOI:

https://doi.org/10.25077/josi.v24.n1.p63-83.2025


 

Table 5. Priority Weights of e SSS Criteria 

Criteria Fuzzy Weight Sub-
criteria 

Local Fuzzy Weight Global Fuzzy Weight Global 
Crisp 
Weight 

Economy 
(K1) 

(0.3270;0.3613;0.3931) C1 (0.1705;0.2152;0.2315) (0.0558;0.0778;0.0910) 0.0763 
C2 (0.1674;0.1684;0.1751) (0.0547;0.0608;0.0688) 0.0612 
C3 (0.1002;0.1406;0.1407) (0.0328;0.0508;0.0553) 0.0485 
C4 (0.0879;0.1406;0.1407) (0.0288;0.0508;0.0553) 0.0479 
C5 (0.1054;0.1046;0.1110) (0,0345;0,0378;0,0436) 0.0382 
C6 (0.0779;0.1219;0.1323) (0.0255;0.0440;0.0520) 0.0423 
C7 (0.1003;0.1407;0.1407) (0.0328;0.0508;0.0553) 0.0486 

Environment 
 (K2) 

(0.2101;0.2684;0.3293) C8 (0.0206;0.1726;0.0341) (0.0260;0.0695;0.0673) 0.0619 
C9 (0.1179;0.1581;0.1741) (0.0248;0.0424;0.0573) 0.0420 
C10 (0.2006;0.2579;0.2830) (0.0421;0.0692;0.0932) 0.0687 
C11 (0.1676;0.2173;0.2616) (0.0352;0.0583;0.0862) 0.0591 
C12 (0.2119;0.2303;0.2409) (0.0445;0.0618;0.0793) 0.0618 

Social 
(K3) 

(0.3281;0.3737;0.3987) C13 (0.1867;0.2027;0.2167) (0.0613;0.0758;0.0144) 0.0631 
C14 (0.1821;0.2035;0.2154) (0.0598;0.0760;0.0143) 0.0630 
C15 (0.1208;0.1988;0.2209) (0.0396;0.0743;0.0147) 0.0586 
C16 (0.1354;0.2096;0.2363) (0.0444;0.0783;0.0157) 0.0622 
C17 (0.1673;0.2082;0.2268) (0.0549;0.0778;0.0151) 0.0635 

Min 𝑘𝑘∗ (1) 

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑙𝑙1 − 𝑢𝑢1 ≤  𝑘𝑘∗𝑢𝑢1 ;  𝑙𝑙1 − 𝑢𝑢1 ≥ − 𝑘𝑘∗𝑢𝑢1
𝑚𝑚1 − 𝑚𝑚1 ≤  𝑘𝑘∗𝑚𝑚1 ;  𝑚𝑚1 − 𝑚𝑚1 ≥ − 𝑘𝑘∗𝑚𝑚1       
𝑢𝑢1 − 𝑙𝑙1 ≤  𝑘𝑘∗𝑙𝑙1 ;  𝑢𝑢1 − 𝑙𝑙1 ≥ − 𝑘𝑘∗𝑙𝑙1         
𝑙𝑙1 − 1,5𝑢𝑢2 ≤  𝑘𝑘∗𝑢𝑢2 ;  𝑙𝑙1 − 1,5𝑢𝑢2 ≥ − 𝑘𝑘∗𝑢𝑢2    
𝑚𝑚1 − 2𝑚𝑚2 ≤  𝑘𝑘∗𝑚𝑚2 ;  𝑚𝑚1 − 2𝑚𝑚2 ≥ − 𝑘𝑘∗𝑚𝑚2 
𝑢𝑢1 − 2,5𝑙𝑙2 ≤  𝑘𝑘∗𝑙𝑙2 ;  𝑢𝑢1 − 2, 5𝑙𝑙2 ≥ − 𝑘𝑘∗𝑙𝑙2      
𝑙𝑙1 − 1,5𝑢𝑢3 ≤  𝑘𝑘∗𝑢𝑢3 ;  𝑙𝑙1 − 1,5𝑢𝑢3 ≥ − 𝑘𝑘∗𝑢𝑢3    
𝑚𝑚1 − 2𝑚𝑚3 ≤  𝑘𝑘∗𝑚𝑚3 ;  𝑚𝑚1 − 2𝑚𝑚3 ≥ − 𝑘𝑘∗𝑚𝑚3 
𝑢𝑢1 − 2,5𝑙𝑙3 ≤  𝑘𝑘∗𝑙𝑙3 ;  𝑢𝑢1 − 2, 5𝑙𝑙3 ≥ − 𝑘𝑘∗𝑙𝑙3     
𝑙𝑙1 − 1,5𝑢𝑢3 ≤  𝑘𝑘∗𝑢𝑢3 ;  𝑙𝑙1 − 1,5𝑢𝑢3 ≥ − 𝑘𝑘∗𝑢𝑢3    
𝑚𝑚1 − 2𝑚𝑚3 ≤  𝑘𝑘∗𝑚𝑚3 ;  𝑚𝑚1 − 2𝑚𝑚3 ≥ − 𝑘𝑘∗𝑚𝑚3 
𝑢𝑢1 − 2,5𝑙𝑙3 ≤  𝑘𝑘∗𝑙𝑙3 ;  𝑢𝑢1 − 2,5𝑙𝑙3 ≥ − 𝑘𝑘∗𝑙𝑙3      
𝑙𝑙2 − 1,5𝑢𝑢3 ≤  𝑘𝑘∗𝑢𝑢3 ;  𝑙𝑙2 − 1,5𝑢𝑢3 ≥ − 𝑘𝑘∗𝑢𝑢3    
𝑚𝑚2 − 2𝑚𝑚3 ≤  𝑘𝑘∗𝑚𝑚3 ;  𝑚𝑚2 − 2𝑚𝑚3 ≥ − 𝑘𝑘∗𝑚𝑚3 
𝑢𝑢2 − 2,5𝑙𝑙3 ≤  𝑘𝑘∗𝑙𝑙3 ;  𝑢𝑢2 − 2,5𝑙𝑙3 ≥ − 𝑘𝑘∗𝑙𝑙3      
𝑙𝑙3 − 𝑢𝑢3 ≤  𝑘𝑘∗𝑢𝑢3 ;  𝑙𝑙3 − 𝑢𝑢3 ≥ − 𝑘𝑘∗𝑢𝑢3         
𝑚𝑚3 −𝑚𝑚3 ≤  𝑘𝑘∗𝑚𝑚3 ;  𝑚𝑚3 −𝑚𝑚3 ≥ − 𝑘𝑘∗𝑚𝑚3      
𝑢𝑢3 − 𝑙𝑙3 ≤  𝑘𝑘∗𝑙𝑙3 ;  𝑢𝑢3 − 𝑙𝑙3 ≥ − 𝑘𝑘∗𝑙𝑙3         
1
6
∗  𝑙𝑙1 +  1

6
∗ 4 ∗ 𝑚𝑚1 +  1

6
∗ 𝑢𝑢1 + 1

6
∗  𝑙𝑙2 +  1

6
∗ 4 ∗ 𝑚𝑚2 +  1

6
∗ 𝑢𝑢2 +

1
6
∗  𝑙𝑙3 +  1

6
∗ 4 ∗ 𝑚𝑚3 +  1

6
∗ 𝑢𝑢3 = 1 

𝑙𝑙1 ≤  𝑚𝑚1 ≤ 𝑢𝑢1 
𝑙𝑙2 ≤  𝑚𝑚2 ≤ 𝑢𝑢2 
𝑙𝑙3 ≤  𝑚𝑚3 ≤ 𝑢𝑢3 
𝑙𝑙1 > 0 
𝑙𝑙2 > 0 
𝑙𝑙3 > 0 
𝑘𝑘 ≥ 0 
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Table 6. Linguistic Scale And Fuzzy Numbers [21] 

Linguistic Term Fuzzy Numbers 
Very Poor (VP) 
Poor (P) 
Medium Poor (MP) 
Fair (F) 
Medium Good (MG) 
Good (G) 
Very Good (VG) 

(0,1,2) 
(1,2,3) 
(2,3.5,5) 
(4,5,6) 
(5,6.5,8) 
(7,8,9) 
(8,9,10) 

Table 7. Supplier Ranking Using e F-ARAS Method 

Supplier Si Qi Rank 
S1 0.1662 0.8981 14 
S2 0.1812 0.9791 3 
S3 0.1719 0.9290 10 
S4 0.1814 0.9804 2 
S5 0.1778 0.9607 6 
S6 0.1810 0.9782 4 
S7 0.1751 0.9463 7 
S8 0.1730 0.9351 9 
S9 0.1783 0.9634 5 
S10 0.1709 0.9234 11 
S11 0.1678 0.9066 13 
S12 0.1815 0.9805 1 
S13 0.1703 0.9201 12 
S14 0.1740 0.9402 8 

A similar technique was used to assess the sub-criteria and calculate their relative weights. e weights of the main 
criteria were then multiplied by those of the sub-criteria to produce the global subcriterion weights. e relative and 
global weights of the main criteria and sub-criteria are shown in Table 5. 

e F-BWM criterion weighting indicates that (S12 ranked first) with a global crisp weight of 0.0763, followed by 
Green Packaging and Labeling (C10) and Patient Safety Assurance (C17) at 0.0687 and 0.0635, respectively. e 
criteria of Waiting Time (C6), Environmental Management System (C9), and Production Capacity (C5) had the 
lowest weights of 0.0423, 0.0420, and 0.0382, respectively. Supplier 12 consistently ranks highest; it demonstrates a 
strong implementation of patient safety protocols, an active and transparent incident reporting system, well trained 
and responsive staff, and effective communication with patients. ese strengths contribute to high performance 
across multiple subcriteria, particularly in areas such as patient safety, process efficiency, and service reliability, 
justifying its top overall ranking. 

F-ARAS Result

e matrix of alternative ratings was generated using the language rating scale as shown in Table 6. Decision makers 
(DMs) first evaluate each supplier by considering various established criteria. Aer all suppliers have been evaluated 
based on all relevant criteria, the next step is to compile a decision matrix. is decision matrix serves as the basis 
for further analysis in supplier selection. 
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Table 8. Supplier Scores And Ranks Using Other Mcdm Methods 

F-ARAS MARCOS CODAS EDAS 

Utility Rank Utility Rank Utility Rank Utility Rank 
S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
S10 
S11 
S12 
S13 
S14 

0.8981 
0.9791 
0.9290 
0.9804 
0.9607 
0.9782 
0.9463 
0.9351 
0.9634 
0.9234 
0.9066 
0.9805 
0.9201 
0.9402 

14 
3 
10 
2 
6 
4 
7 
9 
5 
11 
13 
1 
12 
8 

0.6595 
0.6796 
0.6704 
0.6702 
0.6617 
0.6817 
0.6766 
0.6653 
0.6699 
0.6709 
0.6588 
0.6832 
0.6630 
0.6726 

13 
3 
7 
8 
12 
2 
4 
10 
9 
6 
14 
1 
11 
5 

0.0305 
0.0117 
-0.0063
0.0062
-0.0691
0.0384
0.0454
-0.0655
-0.0407
0.0495
-0.0242
0.0473
-0.0122
-0.0109

5 
6 
8 
7 
14 
4 
3 
13 
12 
1 
11 
2 
10 
9 

0.8893 
0.5788 
0.4723 
0.7159 
0.4811 
0.6213 
0.4568 
0.4093 
0.4027 
0.6427 
0.6548 
0.6115 
0.4882 
0.3511 

1 
7 
10 
2 
9 
5 
11 
12 
13 
4 
3 
6 
8 
14 

Furthermore, the Fuzzy Additive Ratio Assessment System (F-ARAS) method is applied to process the data in the 
decision matrix and produce the final ranking of each supplier. e results of the calculation using the F-ARAS 
method are then presented in Table 7, which displays the order of suppliers based on their performance according 
to the established criteria. 

Comparison of Ranking Using Different MCDM Methods 

In order to evaluate the stability of the employed method, the results of the F-ARAS method were compared with 
the results of other common decision-making methods, such as MARCOS, CODAS, and EDAS. Table 8 displays the 
comparative result of applying these alternative methods. 

e F-ARAS and MARCOS methods generated the same primary ranking, with S12 in first place. e CODAS 
method produced a different order of suppliers, with S10 in first place and S12 in second place; likewise, the EDAS 
method results in a very different order than the F-ARAS method, with S1 in first place and S12 in sixth place. ank 
you for the feedback. MARCOS, CODAS, and EDAS were selected because they offer methodological strengths 
relevant to the decision context. MARCOS considers both ideal and anti-ideal solutions for balanced evaluation, 
CODAS uses Euclidean and Taxicab distances to enhance discrimination among closely ranked alternatives, and 
EDAS evaluates alternatives based on their distance from the average solution, providing a realistic performance 
baseline. ese methods were chosen over more established ones like TOPSIS or VIKOR to explore more recent 
approaches that address limitations such as sensitivity to normalization and rank reversal, and to provide more 
nuanced comparative insights. MARCOS, CODAS, and EDAS were chosen because they offer methodological 
strengths relevant to the decision context. MARCOS considers both ideal and anti-ideal solutions for balanced 
evaluation, CODAS uses Euclidean distance to improve discrimination among closely ranked alternatives, and EDAS 
evaluates alternatives based on their distance from the mean solution, thus providing a realistic baseline of 
performance. ese methods were chosen over more established methods such as TOPSIS or VIKOR to explore 
newer approaches that address limitations such as sensitivity to normalization and rank reversal and to provide more 
nuanced comparative insights. 
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Figure 2. Sensitivity Analysis Conducted by Changing the Weight of Criteria K3. 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 

 
 

 
 

 

Sensitivity Analysis no change in ranking occurred or the supplier following 

A sensitivity analysis was conducted to examine the impact of various rankings on the outcomes of the proposed 
integrated fuzzy model. During the process of changing the scenarios (Sc), the weight assigned to the most effective 
(and important) criterion was altered. e weight of criterion K3 was systematically decreased at a rate of 2% to 
simulate a total of 41 scenarios [21]. Figure 2 shows the updated supplier rankings across the scenarios. 

In Figure 2, dark green bars indicate that no change in ranking occurred; light green bars represent a net change of 
one rank; grey bars represent a net change of two ranks; and white bars represent a net change of three or more ranks 
[17]. Suppliers S2, S4, andf S12 are very sensitive to changes in criterion weights. Meanwhile, suppliers S3, S10, and 
maintain a relatively similar position across all 41 scenarios, indicating that they are not easily affected by changes 
in criterion weight. 

GM(1,1) Result 

Grey Forecasting is a method that does not require complete historical data, only a minimum of four historical data 
points within the same interval. is method focuses on overcoming issues relating to the operational systems such 
as uncertainty, multiple inputs, discrete data, and incomplete data when forecasting with small data sets. e 
GM(1,1) model is easy to implement, works quite well with small sample sizes, can effectively handle nonlinear and 
nonstationary data, and can accommodate incomplete or uncertain information, making it suitable for forecasting 
in real-world scenarios where data quality may vary. 
Supplier performance assessments from 2019 to2023 were provided by decision-makers by considering supplier 
performance using economic, environmental, and social criteria (Table 9). Grey Forecasting GM(1,1) method was 
performed as follow:  

Step 1: X(1) = (0.1718,0.3162,0.4781,0.6293,0.6293,0.7955} 
Step 2: Z(1) = {0.2440,0.3972,0.5537,0.7124}  

Steps 3 to 5: The parameters of the GM(1,1) are calculated using Equation (22) as �𝑎𝑎�    𝑏𝑏�� = [0.0350      0.1393]. 
Step 6: Based on Equation (22) and the calculated parameters, the prediction model gives the expression 

𝑋𝑋�(1)(𝑘𝑘 + 1) = �𝑥𝑥(1)(1) − �0.1393
0.0350

�� 𝑒𝑒−0.0350(𝑘𝑘) + (0.1393
0.0350

). 

Table 10 present the prediction value of X(0). Aer obtaining the prediction for the other tribe, the residual error is 
calculated as the difference between the observed value and the predicted value. e first quarter prediction value is 
identified as the tribe’s starting observation value. e consistent top ranking of Supplier S12 across all three 
forecasting periods indicates a stable and reliable performance, making it a strong candidate for long-term strategic 
partnerships. In contrast, Supplier S5 shows a notable improvement, rising from rank 5 to 2, which suggests positive 
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Table 9. Historical Supplier Performance Data (2019 to 2023) 

Supplier Year 

2019 2020 2021 2022 023 
S1 0.17 0.14 0.16 0.15 0.17 
S2 0.17 0.18 0.19 0.18 0.18 
S3 0.17 0.17 0.18 0.17 0.17 
S4 0.17 0.18 0.17 0.18 0.18 
S5 0.18 0.17 0.17 0.17 0.18 
S6 0.18 0.18 0.19 0.18 0.18 
S7 0.17 0.17 0.18 0.17 0.18 
S8 0.17 0.17 0.17 0.17 0.17 
S9 0.17 0.18 0.17 0.18 0.18 
S10 0.17 0.17 0.18 0.17 0.19 
S11 0.16 0.16 0.16 0.17 0.17 
S12 0.18 0.17 0.18 0.18 0.18 
S13 0.16 0.17 0.17 0.10 0.17 
S14 0.17 0.17 0.17 0.17  0.17 

Table 10. Supplier Performance Forecasting Result and Supplier Rating 

Supplier Period 

2023 Rank 2024 Rank 2025 Rank 
S1 0.164 14 0.170 14 0.176 8 
S2 0.181 3 0.181 3 0.180 4 
S3 0.172 10 0.172 9 0.173 11 
S4 0.182 2 0.182 2 0.182 3 
S5 0.178 5 0.181 3 0.184 2 
S6 0.180 4 0.179 5 0.178 5 
S7 0.175 7 0.176 7 0.178 6 
S8 0.172 10 0.172 11 0.173 13 
S9 0.177 6 0.177 6 0.177 7 
S10 0.172 9 0.172 9 0.173 12 
S11 0.169 13 0.172 12 0.175 9 
S12 0.183 1 0.187 1 0.191 1 
S13 0.171 12 0.172 12 0.173 14 
S14 0.172 8 0.173 8 0.174 10 

 
 
 
 
 

 
 

developments in its performance. Meanwhile, the minor declines observed in other suppliers' rankings may indicate 
the impact of shiing priorities. ese insights are critical for strategic sourcing decisions, as they highlight not only 
current performance but also future potential and risk exposure associated with each supplier. Based on processing 
supplier performance forecasts, the mean absolute percentage errors (MAPE) are well under 5%, which is considered 
“very good.” e level of accuracy of the supplier forecasts is close to 100%, as shown in Table 11. 

Discussion 

is study examined how supplier performance uncertainty is incorporated into the process of selecting sustainable 
suppliers in the healthcare industry. Healthcare institutions prioritize social sustainability when choosing medicine 
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Table 11. Average Residual Errors (MAPE) 

Supplier Error rate (MAPE) % Level of accuracy (%) 
S1 1.17 98.83 
S2 1.03 98.97 
S3 1.41 98.59 
S4 1.11 98.89 
S5 0.40 99.60 
S6 1.04 98.96 
S7 2.22 97.78 
S8 0.98 99.02 
S9 1.06 98.94 
S10 0.80 99.20 
S11 0.49 99.51 
S12 1.05 98.95 
S13 0.70 99.30 
S14 1.17 98.83 

 
 
 

 

 
 
 
 
 
 

providers, as social sustainability issues were ranked by decision-makers as the most important factor. Previous 
studies across various sectors such as manufacturing, construction, and logistics [38] have oen emphasized 
economic or environmental dimensions as dominant. Conversely, the current findings highlight a sector-specific 
subtlety, with social sustainability being the most significant decision-making criterion in healthcare institutions. 

is divergence can be interpreted through the lens of stakeholder theory, which posits that organizations are 
influenced by the expectations and interests of a wide range of stakeholders, including patients, healthcare workers, 
regulators, and the broader community. In healthcare, where service quality, patient safety, labour well-being, and 
equitable access are critical, the prominence of social aspects is both expected and justified. Similarly, institutional 
theory suggests that normative pressures in the healthcare industry such as professional standards, public 
accountability, and ethical obligations may lead organizations to prioritize social dimensions to maintain legitimacy 
and trust. 

Comparative literature in the healthcare domain also supports the view that social responsibility, employee welfare, 
and community health impact are central to sustainability initiatives in this sector. However, the importance shown 
in this study, especially the high ranking of employee related factors, may indicate changing priorities and 
expectations from stakeholders aer the pandemic. 

Healthcare suppliers may derive substantial advantages from comprehending the level of ethical standards they 
should maintain, identifying safety and welfare considerations to incorporate in the procurement process, and 
acknowledging the essential human factors for achieving success in healthcare supply chain management. ese 
findings offer valuable insights for healthcare supply chain managers who are interested in employing socially 
sustainable methods when choosing suppliers. Economic sustainability was the second-most important factor for 
decision-makers. e findings imply that healthcare supply chain professionals mostly prioritize economic criteria 
such as on-time delivery and competitive pricing. A significant consequence of these findings is that suppliers with 
environmentally conscious practices might help mitigate adverse effects on the environment and promote 
sustainability initiatives. e caliber of products and services offered by suppliers directly influences patient safety. 
Selecting a reputable provider helps decrease the likelihood of receiving faulty or hazardous products. e efficacy 
of products and services offered by suppliers can have an impact on patient treatment outcomes. 
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is study is limited by the fact that the sample only considers the healthcare industry. e findings are also limited 
in that historical assessments of supplier performance were based on the opinions of drug-purchasing decision-
makers and a limited amount of historical data. Future research could focus on other industries, as well as samples 
from other countries, to further validate these findings and assess their generalizability. In addition, future research 
can use other grey forecasting methods using more historical data to predict future supplier performance in order 
to select the best suppliers. Ultimately, the model and measurements presented in this paper can be further refined 
through interviews with supply chain practitioners rather than relying solely on questionnaire surveys as the primary 
data collection instrument. 

CONCLUSION 

Sustainability considerations have become a top research priority in recent years. is study has identified specific 
factors that are considered important by healthcare decision-makers when selecting sustainable suppliers. is paper 
proposed a framework for sustainable supplier selection using F-BWM and F-ARAS techniques to determine criteria 
weights and supplier rankings. Grey forecasting GM(1,1) was used to predict the performance of each supplier. e 
application of the framework to a hospital case study showed that social criteria are prioritized by decision makers 
in the healthcare sector because of the nature of healthcare that is closely related to human well-being, social justice, 
and patient safety. External pressures such as societal expectations, media attention, and demands from patient 
advocacy groups are driving healthcare organizations to pay greater attention to social aspects in their procurement 
practices. Hospitals and health care providers have responsibilities to multiple stakeholders, including patients, 
healthcare professionals, governments, and the wider community, so their decisions reflect a complex balance of 
social interests. 

Procurement decision-makers in the study hospital do not place much emphasis on environmental sustainability in 
their supplier selection decisions, which reflects broader challenges commonly observed in the healthcare sector. 
is trend can be attributed to several factors. First, cost constraints oen take precedence, with environmental 
initiatives perceived as adding a financial burden without immediate operational returns. Second, there is a lack of 
regulatory pressure specific to green procurement in healthcare, especially in regions where environmental 
guidelines are either voluntary or poorly enforced. ird, limited awareness and technical capacity to evaluate 
suppliers’ environmental performance can hinder the integration of sustainability criteria.  

Additionally, healthcare organizations may prioritize immediate patient outcomes and service reliability over long 
term ecological impacts. To better integrate environmental considerations in the future, targeted policy 
interventions, incentives for green suppliers, training programs, and standardized. Social criteria are the main 
consideration for decision-makers when choosing drug suppliers, followed by economic criteria. Healthcare 
decision-makers should begin to actively consider environmentally friendly suppliers in their supplier selection 
activities. Balancing the three sustainability pillars of economic, environmental, and social criteria will increase 
sustainable activities in the health service sector. Integrating the grey forecasting GM(1,1) method will help decision-
makers choose the best suppliers for future drug purchases. e proposed model can be practically adopted by 
decision makers as a structured framework to enhance healthcare procurement strategies through the integration of 
sustainability criteria. To facilitate its implementation, the model can be embedded into procurement policies by 
incorporating sustainability metrics particularly social, environmental, and economic dimensions into supplier 
evaluation guidelines. Additionally, organizations can utilize computational tools such as MATLAB, Python, or Excel 
based applications to operationalize the fuzzy MCDM approach, enabling systematic analysis and ranking of 
suppliers. Capacity building efforts, including workshops and training sessions, are recommended to familiarize 
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procurement officers and stakeholders with the fuzzy logic framework and its practical applications. Furthermore, 
integrating the model into digital decision support systems can enable real time supplier assessment, scenario 
analysis, and sustainability driven decision making. ese approaches collectively support the institutionalization of 
sustainability oriented procurement practices in the healthcare sector. 
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