
ABSTRACT 

Global energy consumption is a pressing issue and is predicted to continue increasing between 2010 and 2040. Among the various 
sectors, the industrial sector, particularly manufacturing, is the main driver of this increase. To effectively address this growing problem 
and support energy conservation efforts, reducing idle time on production-related machines is critical. e No-Idle Permutation Flow 
Shop Problem (NIPFSP) and indirectly the need to reduce energy consumption in manufacturing processes are the driving forces behind 
this study. e African Vultures Optimization Algorithm (AVOA) and the Ant Lion Optimizer (ALO) are two novel metaheuristic 
algorithms designed to achieve this goal. e effectiveness of both AVOA and ALO was rigorously evaluated across three distinct 
scenarios: small, medium, and large. Statistical analysis, in the form of independent sample t-tests, was employed to compare the 
performance of these algorithms. We found that, while both algorithms yielded similar results in the small case, AVOA demonstrated a 
superior capability in optimizing the NIPFSP in the medium and large cases problem and, consequently, in curbing energy consumption.  
is implies that AVOA offers a more promising approach to addressing energy consumption concerns in the manufacturing sector, 
particularly in scenarios involving medium to large-scale production processes. e implementation of such innovative metaheuristic 
algorithms holds the potential to significantly contribute to global energy conservation efforts while enhancing the efficiency of 
industrial operations. 

Keywords: no-idle permutation flow shop, energy consumption, AVOA, ALO 

INTRODUCTION 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

AVOA and ALO Algorithm for Energy-Efficient No-Idle Permutation 
Flow Shop Scheduling Problem: A Comparison Study 

Research Article 

Yolanda Mega Risma *,  Dana Marsetiya Utama 

Department of Industrial Engineering, Muhammadiyah Malang University, Malang, Indonesia 

* Corresponding Author: yolandamegarisma@gmail.com 
© 2023 Authors 

DOI: 10.25077/josi.v22.n2.p126-141.2023 Submitted : January 25, 2023  Accepted : November 20, 2023  Published : December 18, 2023 

In recent times, the issue of excessive energy consumption has emerged as a pressing global concern that demands 
immediate attention [1]. Excessive use of energy leads to problems such as running out of resources and causing the 
greenhouse effect, which are major factors in climate change [2][3][4]. Specifically, the industrial sector, particularly 
manufacturing, plays a significant role in high energy use in the world [5][6]. Currently, the majority of 
manufacturing companies predominantly depend on fossil fuels as their primary source of energy [7], causing 
companies to be under pressure to use less energy for operations [5]. In general the significant energy consumption 
in manufacturing primarily occurs when machines are not actively in operation, which is a period referred called 
idle time [8]. erefore, it is essential to take steps to minimize or eliminate downtime in machines, greatly reducing 
total energy consumption. One effective solution being considered is a scheduling strategy that improves how 
machines are used to reduce energy consumption [9]. 

e primary aim of reducing energy consumption is to preserve it for future generations and mitigate the impact of 
energy depletion. is imperative is underscored by previous investigations revealing a dynamic relationship 
between energy depletion, the development of renewable energy sources, and the reduction of carbon emissions [10]. 
In 2010, the manufacturing sector of China accounted for a staggering 85% of the nation's total electrical energy 
usage [11]. Similarly, in 2018, the manufacturing sector of Europe contributed to 77% of the world's energy 

License: CC BY-NC-SA

https://josi.ft.unand.ac.id/index.php/josi/index
https://doi.org/10.25077/josi.v22.n2.p126-141.2023
https://creativecommons.org/licenses/by-nc-sa/4.0/


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

consumption [12]. is escalating trend in energy use has persisted since 2010 and is projected to continue for the 
next 40 years [13]. is trajectory is attributed to the essential role of energy in powering the machines integral to 
production processes within the manufacturing sector, highlighting the critical need for the effective scheduling of 
production activities [14]. 

A pervasive source of energy inefficiency within manufacturing contexts is idle time, a phenomenon prevalent across 
industries such as glass manufacturing, integrated circuits, ceramics, and fiberglass [15]. e quest for a 
comprehensive planning approach to address this challenge has engendered a focus on machine scheduling. At the 
core of this pursuit lies the Permutation Flow Shop Scheduling Problem (PFSP), a complex optimization challenge 
wherein a set of jobs traverses a predetermined sequence of machines with the objective of minimizing the makespan 
or total completion time [16]. Within the intricate domain of scheduling complexities, the No-Idle Permutation Flow 
Shop Scheduling Problem (NIPFSP) emerges as a focal point. NIPFSP accentuates the imperative of eradicating idle 
time, introducing an additional layer of sophistication to the scheduling paradigm. Under the "no-idle" constraint, 
each job must progress seamlessly through a series of machines without interruptions, emphasizing the optimization 
of machine resources and the mitigation of energy waste associated with idle times [15]. 

e NIPFSP is NP-hard, meaning that finding an optimal solution for large instances of the problem is 
computationally challenging. Various heuristic and metaheuristic algorithms, mathematical models, and 
optimization techniques have been developed to address NIPFSP, incorporating techniques such as tabu search [17], 
differential evolution algorithm [18],[19], variable neighborhood search [20, 21], particle swarm optimization [22], 
cluster search [23], and invasive weed optimization algorithm [24]. Furthermore, alternative approaches, including 
memetic algorithm-node-edge histogram [25], and bacterial memetic algorithm-simulated annealing [26], have 
been introduced for the same objective. Beyond addressing tardiness in the NIPFSP problem, various techniques 
have emerged, such as artificial bee colony [27], discrete water wave optimization [28], and teaching-learning based 
optimization [29]. Additionally, procedures like differential evolution-genetic algorithm [15] and distribution 
algorithm cuckoo search [30] have been proposed to minimize tardiness in NIPFSP problems. 

As industries grapple with the imperative of balancing production efficiency and energy conservation, the NIPFSP 
methodologies emerges as a promising avenue. By incorporating the NIPFSP strategy into the operational setting of 
manufacturing, there exists the potential not only to enhance operational efficiency but also to make significant 
contributions to the global imperative of sustainable and energy-efficient industrial practices. However, turning off 
idle machines is not practical because of the complex relationship between energy use, machine efficiency, and the 
production process [16, 31]. While many results have looked at NIPFSP problem using optimization algorithms, 
unfortunately, only a limited number of studies have directed their focus toward the energy-efficient aspect in the 
NIPFSP problem. Among the approaches designed to handle the energy-efficient problem in NIPFSP are the Grey 
wolf algorithm [32], collaborative optimization algorithm [33], and self-learning of the discrete jaya algorithm [34]. 
erefore, understanding that energy efficiency in manufacturing has a big influence on both energy use and the 
total production process is crucial [35]. 

In the manufacturing industry, the increasing concern about energy consumption requires innovative solutions. An 
example of a potential approach to solve this problem includes adjusting planning concepts to decrease energy usage 
in NIPFSP. Two unique metaheuristic algorithms, namely African Vultures Optimization Algorithm (AVOA) and 
Ant Lion Optimizer (ALO), are used in the proposed study to significantly reduce energy consumption during 
NIPFSP. Specifically, AVOA is one of the metaheuristic algorithms that mimic the behavior of African vultures [36]. 
Furthermore, its effectiveness comprises addressing optimization challenges in different domains, parameter 
estimation for three-diode solar photovoltaic models [36, 37], solving multi-objective flexible job shop scheduling 
problems, and optimizing exchange membrane fuel cells [38]. Based on its flexibility, AVOA is recommended as a 
promising solution, while ALO algorithm is a simulation of the interaction between lion ants and captive ants [39] 
and has successfully addressed optimization challenges such as 1) planning vehicle routes [40]; and 2) forecasting 
annual electricity usage [41], and 3) scheduling activities to reduce carbon emissions [42]. However, these algorithms 
have not been previously used to decrease energy consumption. 

ere is an important need for investigation using the latest algorithms, particularly focusing on AVOA and ALO. 
ese algorithms are selected in this study and the absence of prior application to specifically tackle NIPFSP to 
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Figure 1. Permutation Flowshop 

Figure 2 No-Idle Permutation Flowshop 
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minimize energy consumption. As a result, this research has two main objectives: first, is to develop innovative 
metaheuristic algorithm that is the AVOA and ALO for solving NIPFSP problem and reducing energy consumption; 
and second, it compares the outcomes obtained from applying these algorithms to address NIPFSP problems to 
reduce energy consumption. In the remaining part of this paper, Section 2 provides details on the problem 
description, example problem, proposed algorithm, and plans for the experimental procedure. Section 3 presents the 
test results as well as compares the performance of the two algorithms, and finally in Section 4, the research 
conclusions are presented. 

e section provided an overview of the terms and mathematical models related to NIPFSP problem. Figures 1 and 
2 showed the Permutation Flow Shop Scheduling Problem (PFSP) and NIPFSP, respectively. In PFSP, the machines 
were set to stay idle aer finishing a task, but in NIPFSP, they were not idle under any circumstances as shown in 
Figure 2. 

In NIPFSP example, several assumptions were made, including: 
1. All sets of n jobs had to be processed on m sets of machines in the same order.
2. Jobs arrived and were ready for processing at time 0.
3. e processing start time of the first job on the second to m had to be delayed to follow the no-idle criterion.
4. Only one job could be processed on each machine at a time, and each job could only be processed once.
5. e machine could only stop aer the final job had been processed.
6. Job processing time included machine setup time.
7. No machines that were not actively processing jobs were allowed.

Notation:

𝑛 Number of jobs 
𝑚 Number of machines 
𝑖 Job index 
𝑗 Machine index 
𝐶!,#  e completion time of job i on machine j 
𝑆# Start time on machine j 
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𝐹#  e completion time on machine j	 
𝑃!#  Processing energy consumption on job i	processed in machine j	(kWh) 
𝐶$%& Makespan or completion time (hours) 
𝜏#  Processing energy consumption on machine j (kWh) 
𝜑#  Energy consumption when machine j is idle (kWh) 
𝜃#  Idle time of machine j	(hours) 
𝑇𝐸𝐶 Total energy consumption (kWh) 

Decision Variables: 

𝑌!"# = #1
0
		if				job	i	is	processed	at	speed	r	on	machine	j
otherwise

 

𝑌!"# = #1
0
		if				job	i	is	predecessor	of	job		k
otherwise

  ,    𝑖 < 𝑘 

Objective Functions: 
Min TEC (1) 

Constraints: 
𝐶!,% ≥ ∑ 𝑃!%𝑌!"#%

#&% 				∀𝑖	 = 	 (1, … , 𝑛) (2) 

𝐶!"–	𝐶!" 	− 1	 ≥ 	∑ 𝑃!%%
#&% 𝑌!"#			∀"=	(2,… ,𝑚), 𝑖	 = 	 (2, … , 𝑛) (3) 

𝐶!" 	–	𝐶'" 	+	𝐷𝑋!' 	≥ 	∑ 𝑃!%𝑌!"#%
#&% 		∀𝑖	 = 	 (1, … , 𝑛), 𝑗	(1, … ,𝑚), 𝑘	 = 	 (1,… , 𝑛) (4) 

𝐶!" 	–	C'" 	+	DX!' 	≤ 	𝐷 − ∑ 𝑃!%𝑌!"#%
#&% 		∀𝑖	 = 	 (1, … , 𝑛), 𝑗	(1, … ,𝑚), 𝑘	 = 	 (1,… , 𝑛) (5) 

𝐶()* ≥	𝐶!(			∀!=	 (1,… , 𝑛) (6) 
∑ 𝑌!"# = 1%
#&% 					∀𝑖		 = 	 (1, … , 𝑛), 𝑗(1, … ,𝑚) (7) 

𝑌!"# =	𝑌!"+%,#				∀𝑖	 = 	 (1, … , 𝑛), 𝑗(1, … ,𝑚), 𝑟	(1, … , 𝑙) (8) 

𝜃" =	𝐶()* 	−	∑ ∑ 𝑃!%,
#&%

-
!&% 𝑌!"#				∀𝑖		 = 	 (1, … ,𝑚) (9) 

𝑆" ≤	𝐶!" 	−	∑ 𝑃!%𝑌!"#,
#&% 			∀𝑖	 = 	 (1, … , 𝑛),			𝑗(1, … ,𝑚) (10) 

𝐹" ≥	𝐶!" 				∀𝑖		 = (1,… , 𝑛),			𝑗(1, … ,𝑚) (11) 

𝐹" ≥	𝑆" 	+	∑ ∑ 𝑃!%𝑌!"#%
#&%

-
!&% 			∀𝑖	 = 	 (1, … , 𝑛), 𝑗(1, … ,𝑚) (12) 

e objective function, as presented in Equation (1) aimed to reduce Total Energy Consumption (TEC). Timestamps 
for each completed job on the first machine were shown in Equation (2). Furthermore, Equation (3) ensured that the 
next job could be processed when the previous job had been completed. Job order was detailed in Equation (4) and 
(5). Meanwhile, the completion time calculation was shown in Equation (6). Equation (7) and (8) confirmed that all 
jobs were processed at the same speed on every machine. Equation (9) permitted idle time only before and aer the 
final job, there was no idle time on any machine between jobs. Finally, Equation (10), (11), and (12) ensured that 
each machine remained non-idle while waiting for a job to finish. 

Addressing NIPFSP scheduling problem includes determining optimal machine operation time to reduce idle time 
during job processing. Prior obtaining the optimal operation time, some variables are computed as follow: 

𝑆" =	𝑆".% 	+	𝑀𝑎𝑥%/0/-	V∑ 𝑝(!),".%0
"&% −	∑ 𝑝(!),"0.%

"&% X (13) 

𝐶(%)," =	𝑆" 	+	𝑝(%), ∀𝑗	 = 	 (1,2, … ,𝑚)  (14) 

𝐶(%)," =	𝐶(!.%)" 	+	𝑝(")			∀𝑖		 = 	 (2, 3, … , 𝑛),			𝑗	 = 	 (1,2, … ,𝑚) (15) 

𝐶()* =	𝑀𝑎𝑥%/0/-V∑ 𝐶(!),"0
!&% X	; 	∀𝑗	 = 	 (1,2, … ,𝑚) (16) 

𝑇𝐸𝐶	 = 	∑ ∑ ∑ 3!"4"
56

,
#&%

(
"&%

-
!&% 	𝑌!"# +∑

7"8"4"
56

(
"&%

(17) 
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Equation (13) shows the formula for machine start time where 𝑆# =	(1,2, . . . , )., with the initial value set at 𝑆' = 0. 
Equation (14) denotes the completion time of the first job on machine j	by summing up the starting time of the first 
job on the first machine and the processing time of the first job on machine j (𝑝('),#). Equation (15) presents the 
completion time of job i on machine j	by summing up the result of the completion time of the previous job on 
machine j (𝐶(!*')#) with the production process time on machine j (𝑝(#)). Equation (16) determines the completion 
time of the last job on the last machine which is commonly called as makespan. Finally, Equation (17) computes the 
total energy consumption is presented (TEC). 

In this section, AVOA and ALO algorithms are introduced for solving the problem of reducing energy consumption 
in NIPFSP. To achieve the reduction, the Large Ranked Value (LRV) method is used, which is a simple operation 
known for repositioning the swarm effectively into consecutive permutation jobs and recognized for its efficient 
mapping of continuous values into permutation jobs (see [43, 44] for more details). 

African Vultures Optimization Algorithm (AVOA) 

AVOA is a metaheuristic method that exploits the behavior of vultures in their natural habitat. e algorithm uses 
fitness function calculations to simulate the physical division of vultures into two groups. e strongest and best 
vultures are the best solutions; the rest of the population strives to move closer to these ideal solutions. To avoid the 
weakest solutions and improve convergence toward optimal results, the algorithm includes an anti-starvation trade-
off strategy. is grouping is inspired by vultures' innate tendency to form groups to effectively find food [36]. e 
AVOA is further formulated in four stage below: 

Stage 1: selection of the best vultures in each group 

e populations are initially randomly distributed within the search space. e fitness values of these vultures are 
then calculated. Among these vultures, the optimal vulture in the first group is selected as the best solution and the 
superior agent in the second group is picked the second-best solution. e remaining solutions are rearranged into 
the first and second groups using Equation (18). 

𝑅	(𝑖) = ^
	BestVulture%
	BestVulture9

		
if

if
			
𝑝! = 𝐿%
𝑝! = 𝐿9

 (18) 

where 𝐿% and 𝐿9 stand for the probability parameter (𝑝!) that is used to choose the best vulture in the first and second 
places, respectively. Additionally, the probability that other vultures will move to one of the best solutions is 
determined by these parameters, which have values between 0 and 1. e roulette wheel mechanism, as shown in the 
Equation (19), is used to carry out this process. 

𝑝! 	=
:!

∑ :!#
!$%

(19) 

where F denotes starvation rate of the vultures. 

Stage 2: Starvation rate of vultures 

e vultures travel long distances in search of food because they are voracious eaters and have a lot of energy when 
full. Vultures cannot fly or find food if they are hungry. ey also start to act more aggressively. is behavior can be 
simulated mathematically as follow: 

𝑡	 = ℎ f𝑠𝑖𝑛< f=
9
× !>?#)>!@-!

ABC_!>?#)>!@-
i + 𝑐𝑜𝑠 f=

9
× !>?#)>!@-!

ABC_!>?#)>!@-
i − 1i (20) 

𝐹 =	 (2	 ×	𝑟𝑎𝑛𝑑% 	+ 	1) 	× 	𝑧	 × f1 −
!>?#)>!@-!

()*!>?#)>!@-E
i + 	𝑡 (21) 
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where F represents the starvation rate of the vultures, iteration and max_iteration represent the current and 
maximum iteration, z represents a random number in the interval [-1, 1], h represents a random number in the 
interval [-2, 2] and 𝑟𝑎𝑛𝑑' represents a random number in Interval between 0 and 1. e vulture starves when its 
value is less than 0; However, if its value increases, the vulture is satisfied. e AVOA is also transferred from the 
exploration to the exploitation phase using Equation (21). Conversely, Equation (20) increases the probability of 
leaving local optima. Equation (20) uses the term w, a fixed number, to indicate whether the AVOA is in the 
exploration or exploitation phase. e probability of the exploration phase in the last stage increases as w increases. 
However, entering the exploration phase is made more difficult by lowering w. In addition, the algorithm enters the 
exploitation phase if the value of |𝐹| is less than 1, otherwise it enters the exploration phase. 

Stage 3: Exploration 

e vultures are highly skilled at seeing, finding food, and spotting sick, dying animals. For vultures, however, 
locating food can be exceedingly challenging. Vultures spend a lot of time examining their living space and cover 
great distances in pursuit of food. A parameter called P1 is used to select either of the two strategies that vultures can 
use to investigate different random areas in the AVOA. is parameter, which determines how each of the two 
strategies is used, needs to be valued before the search operation and should have a value between 0 and 1. 

A random number between 0 and 1 is generated to allow the selection of any strategy in the 𝑟𝑎𝑛𝑑F% exploration 
phase. Equation (23) is applied if this value is greater than or equal to the P1 parameter. On the other hand, Equation 
(24) is employed if 𝑟𝑎𝑛𝑑F% is less than the parameter P1. In this instance, every vulture in the area looks around it at 
random to find food. e process is depicted in Equation (22).

𝑃	(	𝑖 + 1	) = o	
Equation	(23)
Equation	(24)			

if
if 			

𝑃% ≥ 𝑟𝑎𝑛𝑑F%
𝑃% < 𝑟𝑎𝑛𝑑F%

 (22) 

𝑃	(𝑖	 + 	1) 	= 	𝑅(𝑖)	– 	𝐷(𝑖) 	× 	𝐹  (23) 

𝑃	(𝑖	 + 	1) 	= 	𝑅(𝑖)	– 	𝐹	 +	𝑟𝑎𝑛𝑑9 	× 	((𝑢𝑏	– 	𝑙𝑏) 	×	𝑟𝑎𝑛𝑑G 	+ 	𝑙𝑏) (24) 

𝐷(!) 	= |𝑋	 × 	𝑅(𝑖) − 𝑃(𝑖)|  (25) 

Equation (23), where 𝑃	(𝑖	 + 	1)	 is the vulture position vector in the next iteration, states that vultures randomly 
search the surrounding area at a random distance of one of the best cultures of the two groups. Equation (18) is used 
in this iteration to select one of the best vultures 𝑅(𝑖), as shown in Equation (25). Additionally, vultures move 
randomly in X to defend food from other vultures.  e coefficient vector X (i.e., the value equals 2 × rand) which 
varies with each iteration, increases the random motion (rand is a random number [0, 1]). 

A random value [0, 1] is used for 𝑟𝑎𝑛𝑑9	 in Equation (24). e values of 𝑙𝑏 and 𝑢𝑏 show the variables' upper and 
lower bounds, respectively. Equation (24) is used to generate a basic model for the random generation of solutions 
in the interval (𝑙𝑏, 𝑢𝑏). e coefficient of randomness is increased by using 𝑟𝑎𝑛𝑑G. A random motion is added to the 
𝑙𝑏 if 𝑟𝑎𝑛𝑑G is given a value that is close to 1. is causes the solutions to be distributed in similar. In order to look for 
various search space areas and boost diversity, it generates a high random coefficient at the search environment scale. 

Stage 4: Exploitation 

e fourth phase was the Exploitation phase, occurring when the |F| value ranged between 1 and 0.5. e 
parameter	𝑃+, which ranged from 0 to 1, determined the selection of each strategy, guided by the random number 
𝑟𝑎𝑛𝑑,+ and the explanation of this process was provided in Equation (26). 

𝑃	(	𝑖 + 1	) = ^	
Equation	(27)

Equation	(30)
			
if

if
			
𝑃9 ≥ 𝑟𝑎𝑛𝑑F9
𝑃9 < 𝑟𝑎𝑛𝑑F9

(26) 

In the context of food competition, when the |F| value exceeded 0.5, vultures were relatively well-fed and energetic. 
e value of 𝐷(𝑖)	was calculated using Equation (27), where the satiation level of vultures was represented by F. e 
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random number 𝑟𝑎𝑛𝑑-,	ranging from 0 to 1, and 𝑑(𝑡), representing the distance of weaker vultures to one of the two 
best vulture groups, were calculated through Equation (28). e values for 𝑆% and 𝑆9, derived from Equation (29), 
showed vultures engaging in rotational flight using the Spiral model mathematically. e value of 𝑟𝑎𝑛𝑑.	and 
𝑟𝑎𝑛𝑑/	represented random numbers in the range of (0,1). 

𝑃(𝑖	 + 	1) 	= 	𝐷(𝑖) 	× (𝐹	 +	𝑟𝑎𝑛𝑑H) − 𝑑(𝑡) (27) 

𝑑(𝑡) = 	𝑅(𝑖)	– 	𝑃(𝑖)  (28) 

𝑆% = 	R(i) 	×	f#)-I&×	3(!)
9=

i 	× 	cos	(P(i)) (29) 

𝑆9 = 	R(i) 	×	f#)-I'×	3(!)
9=

i	× 	sin	(P(i)) 

𝑃	(𝑖	 + 	1) 	= 	𝑅(𝑖)	–	(𝑆% +	𝑆9) (30) 

Stage 5: Exploitation (Second phase) 

When the value of F was less than 0.5, the part of the process was executed. In the second phase, the random number 
𝑟𝑎𝑛𝑑,0	was generated in the range of 0 to 1. When 𝑟𝑎𝑛𝑑,0	was higher than or equal to 𝑃0	the selected strategy 
included collecting different types of vultures in the vicinity of the food source. However, when the obtained value 
was lower than the parameter	𝑃0, the strategy used was encirclement and aggressive competition for food, as 
explained in Equation (31). 

𝑃(𝑖 + 1) = ^
Equation	(33)

Equation	(34)
			
if

if
		
𝑃G ≥ 𝑟𝑎𝑛𝑑FG
𝑃G < 𝑟𝑎𝑛𝑑FG

(31) 

To express the movement of vultures, Equation (32) was used. e variable 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒%(i)	represented the best 
vulture of the first group, while 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒9(i)	represented the best vulture of the second group in the current 
computation. In the current iteration, the satiation level of the vultures represented by the letter F was determined 
using Equation (21). Furthermore, the position of the i-th vulture was represented by the symbol 𝑃(𝑖). e position 
of the vulture was improved in Equation (33), where 𝑃(𝑖 + 1) represented the position of the vulture in the 
subsequent iteration, and 𝐴% and 𝐴9 were derived from Equation (32). 

𝐴% =	𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒%(i) 	−	
L?E>MN,>N#?%(!)×	3(!)
L?E>MN,>N#?%(!)×	3(!)(

	× 	F (32) 

𝐴9 =	𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒9(i) 	−	
L?E>MN,>N#?((!)×3(!)
L?E>MN,>N#?((!)×	3(!)(

	× 	F 

𝑃	(i	 + 	1) 	= O%+	O(
9

 (33) 

In situations of high competition for food, shown by an F value less than 0.5, vulnerable vultures moved toward 
superior vultures to search for any remaining food pieces. is movement was mathematically represented by 
Equation (34). Following that, a Lévy flight (LF) pattern was used to improve the effectiveness of the AVOA 
mechanism. e variable d means the dimension of the problem, and the variables u	and v were random numbers in 
the range of 0 to 1. Equation (35) ensured that the constant value β was equal to 1.5. 

𝑃	(𝑖	 + 	1) 	= 	𝑅(𝑖) 	−	 |𝑑(𝑡)| 	× 	𝐹	 × 	𝐿𝑒𝑣𝑦	(𝑑) (34) 

𝐿𝐹	(x) = 	0.01	 ×	N	×	P
|R|

%
)
,				𝜎	 = �

#	(%+	S)	×	TUV	W*)( X

#	(	%+	S9)	×	S	×	9W)+%( X
�	

%
) (35)  
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is research employs AVOA to address the challenge of reducing energy consumption in the context of NIPFSP. 
e AVOA pseudocode for the NIPFSP incorporating energy consumption reduction is shown in Figure 3. 

1 : Inputs : the population size N and maximum number of iterations T 
2 : Outputs : e location of Vulture and its fitness value 
3 : Initialize the random population 𝑃! (i = 1,2,…,N) 
4 : while (stopping condition is not met) do 
5 : Apply LRV for changes best position to job sequences 
6 : Energy Consumption values of Vulture 
7 : Set 𝑃12345674682', as the location of Vulture (First best location Best Vulture Category 1) 
8 : Set 𝑃12345674682+, as the location of Vulture (Second best location Best Vulture Category 2) 
9 : for (each Vulture (𝑷𝒊)) do 
10 : Select R(i) using Eq. (18) 
11 : Update the F using Eq. (21) 
12 : if (|𝑭| ≥ 1) then 
13 : if (𝑷𝟏 ≥	𝒓𝒂𝒏𝒅𝑷𝟏) then 
14 : Update the location of Vulture using Eq. (23) 
15 : else 
16 : Update the location of Vulture using Eq. (24) 
17 : if (|𝑭| < 1) then 
18 : if (|𝑭| >0.5) then 
19 : if (𝑷𝟐 ≥	𝒓𝒂𝒏𝒅𝑷𝟐) then 
20 : Update the location Vulture using Eq. (27) 
21 : else 
22 : Update the location Vulture using Eq. (30) 
23 :  else 
24 : if (𝑷𝟑 ≥	𝒓𝒂𝒏𝒅𝑷𝟑) then 
25 : Update the location Vulture using Eq. (33) 
26 : else 
27 : Update the location Vulture using Eq. (34) 
28 : Return 𝑃12345674682' 

Figure 3. AVOA pseudocode for NIPFSP with energy consumption reduction 

Ant Lion Optimizer  (ALO) 

e ALO is an algorithm that mimics the behavior of the Antlion species in hunting prey. In this case, ants will be 
used as prey for Antlion. Antlion will initially be in a place and make a sand pit trap. Ants that are on the edge of the 
sand pit looking for food will slip into the hole and become prey for the Antlion. en the Antlion will move and set 
a trap to catch other ants. e ALO steps are described as follow: 

Step 1: Random walk of ants 

e step size t is represented by the random walk of ants, 𝑋(𝑡), where n is the maximum number of iterations and 
csum is the cumulative sum of consecutive random jumps, as expressed in Equation (36). Equation (37) represents 
the stochastic function 	𝑟(𝑡)	using rand, a uniform distribution random number generated within the interval [0, 1]. 

𝑋(𝑡) 	= 	 [0, 𝑐𝑢𝑚𝑠𝑢𝑚	(2𝑟(𝑡%) − 1), 𝑐𝑢𝑚𝑠𝑢𝑚	(2𝑟(𝑡9) − 1)… , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡-) − 1)] (36) 

𝑟(𝑡) = #	10			
if
if			
𝑟𝑎𝑛𝑑 > 0.5
𝑟𝑎𝑛𝑑 ≤ 0.5 (37) 
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An objective function determines the fitness values for the ants, which are kept in the form of a matrix. 𝑀>?4 is a 
matrix for tracking each ant's location, and 𝐴!,#  represents  j-th variable dimension of the i-th ant. Equation (38) 
defined this formulation, where n denoted the number of ants and d the number of variables. Equation (39) stores 
the objective function f which represents the fitness values for the ants. e antlions' fitness values are kept in a 
different matrix in a similar fashion, as expressed in Equation (40) and (41). 

𝑀O-> =		

⎣
⎢
⎢
⎢
⎡
𝐴%,% 𝐴%,9 … … 𝐴%,I
𝐴9,% 𝐴9,9 … … 𝐴9,I
⋮						 ⋮			 	⋮		 	⋮				 ⋮
⋮						 ⋮ 				⋮ 			⋮				 ⋮

𝐴-,% 𝐴-,9 … … 𝐴-,I⎦
⎥
⎥
⎥
⎤

 (38) 

𝑀YO 		= 	

⎣
⎢
⎢
⎢
⎡
𝑓([𝐴%,% 𝐴%,9 … 𝐴%,I])
𝑓([𝐴9,% 𝐴9,9 … 𝐴9,I])

⋮
⋮

𝑓([𝐴-,% 𝐴-,9 … 𝐴-,I])⎦
⎥
⎥
⎥
⎤

 (39)  

𝑀O->, =	

⎣
⎢
⎢
⎢
⎡
𝐴𝐿%,% 𝐴𝐿%,9 … … 𝐴𝐿%,I
𝐴𝐿9,% 𝐴𝐿9,9 … … 𝐴𝐿9,I

⋮						 ⋮			 	⋮		 	⋮				 ⋮
⋮						 ⋮ 				⋮ 			⋮				 ⋮

𝐴𝐿-,% 𝐴𝐿-,9 … … 𝐴𝐿-,I⎦
⎥
⎥
⎥
⎤

 (40) 

𝑀YOZ =	

⎣
⎢
⎢
⎢
⎡
𝑓([𝐴𝐿%,%, 𝐴𝐿%,9, … 𝐴𝐿%,I])
𝑓([𝐴𝐿9,%, 𝐴𝐿9,9, … 𝐴𝐿9,I])

⋮
⋮

𝑓([𝐴𝐿-,%, 𝐴𝐿-,9, … 𝐴𝐿-,I])⎦
⎥
⎥
⎥
⎤

 (41) 

Equation (42) controlled the random walk of ants, constraining movement in the search space. is formula used a 
normalized min-max calculation, where 𝑎! 	denotes the minimum of the random walk for the i-th variable, 
𝑐! 	represents the minimum value for that iteration, 𝑑!	represents the maximum of the random walk for the i-th 
variable, 𝑐!4	signifies the minimum value for the i-th iteration, and 𝑑!4	is the maximum value for the i-th variable at 
the t-th iteration. 

𝑋!4 =	
AB!

,*	%!C&	(D!*	E!
,)

(D!
,*	%!)

+ 𝑐! (42) 

Step 2: Falling ants toward ant lion 

Random ant movement, affected by ant-lion traps, was expressed through Equations (43) and (44). In Equations (43) 
and (44), 𝐴𝑛𝑡𝑙𝑖𝑜𝑛#4 represens the position of selecting the j-th ant lion in t-th iteration. 𝑐4	represents the minimum 
value across all variables in t-th iteration, 𝑑4		represents a vector with the maximum values across all variables in 
iteration t, 𝑐!4	represents for the minimum values across all variables for the i-th ant, and 𝑑!	4 	shows the maximum 
values across all variables for the i-th ant. 

𝑐!4 =	𝐴𝑛𝑡𝑙𝑖𝑜𝑛#4 +	𝑐4 (43) 

𝑑!4 =	𝐴𝑛𝑡𝑙𝑖𝑜𝑛#4 +	𝑑4 (44) 

e narrowing of the random walk limit is shown in Equations (45) and (46), where I is the ratio defined as 𝐼 =
10F 4

G
 . e notation t represents the current iteration, T is the maximum number of iterations, and w is a constant 
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based on the current iteration (w = 2 for t > 0.1T; w = 3 for t > 0.5T; w = 4 for t > 0.75T; w = 5 for t > 0.9T; and w = 
6 for t > 0.95T), e w value adjusts the exploitation accuracy rate. 

𝑐4 =	 E
,

H
 (45) 

𝑑4 =	 D
,

H
 (46) 

Equation (47) shows how an ant lion captures its prey and then reconstructs the burrow of the ant to bury them in 
the sand. In this equation, t represents the current repetition, and 𝑎𝑛𝑡𝑙𝑖𝑜𝑛#4	shows the position of selecting the	j-th 
ant lion during the t-iteration. Equation (48) models the process of determining the most suitable ant lion. 𝑎𝑛𝑡!4 
represents the position of the i-th ant during the t-iteration. Using the roulette wheel at the t-iteration, 𝑅>4 	describes 
the position of the ant around the selected ant lion, while 𝑅I4 	shows the location where the ant circulated around the 
selectivity, the best ant lion, during the t-iteration. 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛#4 =	𝐴𝑛𝑡!4	𝑖𝑓	𝑓(𝐴𝑛𝑡!4) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛#4) (47) 

𝐴𝑛𝑡!> =	
[-
, +[.

,

9
  (48) 

e adopted ALO pseudocode for the NIPFSP integrating energy consumption reduction is presented in Figure 4: 

1 : Initialize the first population of ants and ant-lions randomly 
2 : Apply LRV for changes best position to job sequences 
3 : Energy Consumption of ants and ant-lions 
4 : Find the best ant lions and assume it as the elite 
5 : while (the stopping criterion is not satisfied) do 
6 : for every ant 
7 : Select an ant-lions using Roulette wheel 
8 : Update c and d using equations Eqs. (45) and (46) 
9 : Create a random walk and normalize it using Eqs.(36) and (42) 
10 : Update the position of ant using (48) 
11 : end for 
12 : Calculate the fitness of all ants 
13 : Replace an ant-lion with its corresponding ant it if becomes fitter (Eq.47)) 
14 : Update elite if an ant-lion becomes fitter than the elite 
15 : end while 
16 : return elite 

Figure 4. ALO pseudocode for NIPFSP with energy consumption reduction 

Experimental Data and Procedures 

is study used job and machine data from previous study of [45, 46]. Table 1 organized this data to clarify processing 
times into three case types. Tables 2, 3, and 4 provided details on energy consumption during processing and idle 
time for Case 1, Case 2, and Case 3, respectively. e experimental procedure included repeating 30 times for both 
algorithms to establish the total energy consumption (TEC). Each case applied three iterations (100, 300,500), and 
three populations (100, 300,500) to find the optimal energy consumption. e best performance of both algorithms 
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Table 1. Source of Experimental Data 

Problem Job and Machine Category Reference 
Case 1 10 job 6 machine Small Carlier [45] 
Case 2 30 job 10 machine Medium Reeves [46] 
Case 3 50 job 10 machine Large Reeves [46] 

Table 2. Energy Consumption Data for Case 1 

Job Machine 
1 2 3 4 5 6 

𝜏#  (kWh) 0,4507 0,5582 0,3014 0,9409 0,7859 0,2709 
𝜑#  (kWh) 0,0066 0,0164 0,0048 0,1007 0,0871 0,003 

Table 3. Energy Consumption Data for Case 2 

Job Machine 
1 2 3 4 5 6 7 8 9 10 

𝜏#   (kWh) 0.2069 0.4754 0.9815 0.3853 0.1825 0.5439 0.2389 0.5302 0.6656 0.794 
𝜑#  (kWh) 0.00624 0.0096 0.0236 0.0079 0.0048 0.007 0.0033 0.0089 0.008 0.00751 

Table 4. Energy Consumption Data for Case 3 

Job Machine 
1 2 3 4 5 6 7 8 9 10 

𝜏#  (kWh) 0.8785 0.2544 0.884 0.1757 0.6843 0.4324 0.4011 0.1903 0.4123 0.3214 
𝜑#  (kWh) 0.0091 0.002 0.038 0.0009 0.0048 0.0034 0.0033 0.0016 0.0038 0.0041 

RESULTS AND DISCUSSION 

 
 
 
 
 
 
 
 
 
 

 
 
 

was determined based on the lowest average TEC value.  IBM SPSS Statistics 21 was used to conduct an independent 
sample t-test to test the two-tailed significance value and determine the superiority between the AVOA and ALO 
algorithms. e algorithms' performance equivalents for AVOA and ALO were taken into consideration when the 
two-tailed significance value was greater than 0.05. On the other hand, AVOA and ALO demonstrated notable 
performance differences when the value was less than 0.05. e experimental results were also presented through 
box and whisker diagrams. All these experiments were performed on the Windows 10 operating system using an 
Intel Core i3 processor. 

e results section analyzed the research findings, exploring how the number of repetitions and population size 
affected TEC. Additionally, it compared the performance usefulness between AVOA and ALO algorithms through 
an independent sample t-test. e subsequent sections provided a detailed discussion of the results for both AVOA 
and ALO algorithms. e TEC results for various populations and iterations from ALOA and ALO were displayed 
in Table 4. In Case 1, iteration 300 produced the best results with a population of 100. e optimal performance was 
reached in Case 2 at iteration 500 with a population of 500, and in Case 3 at the same iteration and population of 
500. Increased population and iteration sizes were found to reduce TEC, according to the experimental results. 
Conversely, lower TEC was produced by smaller populations and fewer repetitions.

To determine the usefulness of the two algorithms, the independent sample	t-test was performed on all TEC data 
derived from 30 replicates of experiments for each case and algorithm. Results are displayed using box and whisker 
plots. e average of the figures shows that for case 1, the data distribution produced by the AVOA algorithm is larger 
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Table 4. Comparison of ALOA and ALO on TEC (in kWh) 

Population Iteration 100 Iteration 300 Iteration 500 
AVOA ALO AVOA ALO AVOA ALO 

Case 1 
100 16,867.14 16,868.96 16,867.14 16,867.134 16,867.14 16,867.14 
300 16,867.14 16,867.14 16,867.14 16,867.134 16,867.14 16,867.14 
500 16,867.14 16,867.14 16,867.14 16,867.134 16,867.14 16,867.14 
Case 2 
100 7,612.51 7,615.49 7,613.62 7,613.37 7,612.314 7,613.39 
300 7,612.77 7,614.33 7,612.83 7,614.35 7,611.67 7,613.56 
500 7,612.52 7,614.50 7,611.99 7,613.59 7,611.67 7,613.82 
Case 3 
100 11,993.39 11,993.40 11,993.22 11,992.97 11,993.19 11,994.11 
300 11,993.15 11,994.49 11,992.89 11,992.85 11,992.37 11,992.90 
500 11,992.84 11,993.94 11,992.57 11,992.82 11,991.92 11,992.36 
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than the ALO data distribution; However, for cases 2 and 3, as shown in Figures 5b and 5c, respectively, the data 
distribution produced by the AVOA algorithm is smaller than the ALO data distribution. 

e independent sample t-test results for each case using the AVOA and ALO algorithms are displayed in Table 5. 
Since the two-tailed significance (sig) value in Case 1 is greater than 0.05, the performance of the AVOA and ALO 
algorithms is comparable. e AVOA and ALO algorithms, however, perform differently in Cases 2 and 3, with sig 
values (2-tailed) < 0.05. As a result, the average of the experimental results is used to determine the best performance 
in Cases 2 and 3. In Cases 2 and 3, the average values derived from AVOA algorithm are lower than ALO's, indicating 
that AVOA performs better in these scenarios. 

As a metaheuristic optimization technique, AVOA sought to mimic the foraging and navigational habits of African 
vultures [46]. Moreover, earlier studies demonstrated that when AVOA was used in place of alternative metaheuristic 
algorithms, the results were consistently better [36]. Achieving varying results required a successful trade-off between 
exploration and exploitation. One important factor in AVOA's effectiveness was how well it handled this trade-off 
[47]. A time-varying mechanism and chaotic tent mapping were added to an improved version of AVOA, which 
performed better than other metaheuristic algorithms [48]. AVOA's efficacy was greatly enhanced by its capacity to 
replicate the African vulture's searching and navigational patterns, which enabled it to explore and utilize the search 
space more efficiently. As a result, the study suggested solving NIPFSP with AVOA in order to lower energy 
consumption. 
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b. Data distribution for Case 2

c. Data distribution for Case 3

Figure 5. e independent sample	t-test for TEC 

Table 5. Independent Sample T-test Results 

Case 1 Case 2 Case 3 
AVOA ALO AVOA ALO AVOA ALO 

Mean 16,874.938 16,874.22 7,615.021 7,616.097 11,994.204 11,994.718 
Standard Deviation 12.176 8.257 1.531 1.302 0.979 0.987 
t 0.266 -2.933 -2.025
Sig.(2-tailed) 0.791 0.005 0.047 

CONCLUSION 
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is research introduced two innovative approaches, AVOA and ALO, as effective methods to reduce energy 
consumption. e investigation compared both algorithms to address NIPFSP problem and the results showed that 
both AVOA and ALO effectively decreases energy consumption in a small dataset. However, in medium and large 
datasets, AVOA algorithm showed greater effectiveness in minimizing energy consumption. Tests on the parameters 
of AVOA and ALO showed that energy consumption decreases with larger population sizes and more replication. It 
should be acknowledged that this exploration has some limitations, particularly in the aspect of computational effort. 
erefore, future research is needed to investigate the computational time differences between AVOA and ALO 
algorithms. 
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