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ABSTRACT 

Intermodal container terminals handle both the pickup and delivery of containers to and from customers, with these transport activities 
and terminal handling comprising a significant portion of intermodal transport costs. Efficient operations are therefore essential, 
particularly when time window constraints limit routing flexibility. is study presents a metaheuristic incorporating time windows to 
plan container pickups and deliveries. e proposed algorithm operates in three phases: initial solution construction using an insertion 
heuristic, improvement via local search, and further refinement through a deterministic annealing metaheuristic. e presence of time 
windows makes the planning more difficult, as the transport company has less flexibility in constructing the transport routes and, as a 
result, the distance travelled and/or the cost is increased. To assess how time window characteristics affect algorithm performance and 
cost, the study introduces two temporal descriptors—concentration (the clustering of time windows during the day) and specialization 
(the dominance of short or long-time windows in specific periods). e results of the experimental runs of the algorithm are statistically 
analysed to identify under which conditions of concentration and specialization an effect on the cost can be identified. Experimental 
results reveal that increased concentration leads to a rise in both the number of routes (up to 35%) and total cost (around 2%). While 
concentration results in more routes, these routes remain relatively cost-efficient. Furthermore, a lack of specialization in concentrated 
time windows amplifies both the number of routes and the total cost. Finally, the length of time windows influences these effects, with 
shorter time windows having a reduced impact on concentration and specialization outcomes compared to longer ones. 
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INTRODUCTION 

Many governments, including the European Union, have implemented transport policies aimed at establishing 
sustainable transport systems. Among these efforts, the successful promotion of intermodal transport has been 
identified as a key strategy. Intermodal transport offers several advantages over unimodal transport, including 
benefits in cost, quality, time, labor efficiency, safety, and security. It is also favored for geographical, environmental, 
and energy efficiency reasons [1], [2], [3]. From a business perspective, the growing need for speed and agility in the 
supply chain is prompting firms to rethink traditional logistics services. As a result, interest in intermodal freight 
transportation has increased significantly across business, research, and policy domains over the past two decades. 
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Intermodal transport emerges as a distinct mode when the logistics chain is fully integrated, offering a seamless 
door-to-door service. However, achieving this requires a higher level of coordination to manage the flow efficiently. 

Governments and businesses look differently at the costs of intermodal transport or, its alternative road transport. 
at is because governments also look at external costs. An external cost appears when the economic activity of 
companies or persons has an impact on other companies or persons and that second group is not fully accounted 
for.  Examples are usage costs related to the usage of transport infrastructure, congestion costs, accident costs, and 
environmental costs. e business looks at the costs of the door-to-door service to compare intermodal transport 
with road transport. Understanding these differing perspectives is essential when examining the detailed cost 
structure of intermodal transport, which includes multiple logistical segments and handling requirements. e cost 
for a typical intermodal transport route consists of the costs generated by three segments: pre-haulage, main-haulage, 
and end-haulage—corresponding to the journey from the customer to the terminal, between terminals, and from 
the terminal to the final customer, respectively. At the (port) terminals, the handling cost is high because of the need 
for cranes used for the transhipment of containers on barges. e road-based movement of containers between 
intermodal terminals, depots, and shippers—known as "drayage"—is typically performed by trucks [4], while the 
main haul is conducted via rail, deep-sea shipping, short-sea shipping, or inland waterways. is cost breakdown 
highlights the importance of each segment, especially drayage, which—despite covering a relatively short distance—
can significantly influence the total cost and efficiency of intermodal transport. Although drayage accounts for only 
a minor segment of the total distance within an intermodal transport chain, it frequently constitutes a substantial 
proportion of the overall transportation costs [5]. is disproportion arises from the fact that the main haulage 
modes in intermodal transport—such as shipping or rail—typically achieve lower unit costs due to their high 
transport capacities. Consequently, enhancing the efficiency of road-based components, particularly drayage 
operations, is critical to improving the overall attractiveness and competitiveness of intermodal transport systems. 

A literature review on intermodal transport highlights the need for decision-support tools to aid policymakers in 
developing sustainable freight transportation policies [6]. ese tools can facilitate the integration of truck routing 
and long-haul intermodal service selection, ultimately promoting more efficient and sustainable logistics systems. 
However, decision-support tools can also assist stakeholders in organizing and optimizing intermodal operations 
[7]. ese tools enable a comparative analysis of transport alternatives across different routes and transport modes 
[8]. Additionally, shippers oen perceive intermodal transport as slow and inflexible, with limited service coverage 
[9]. Despite these challenges, studies have demonstrated potential benefits. For instance, research on a two-region 
truck-rail network revealed promising outcomes [10]. El Yaagoubi et al. [11] further advanced the field by integrating 
optimization, simulation, and managerial perspectives in a short-distance intermodal container service that 
combines road and rail transport. 

is research focuses on drayage operations, which typically occur at the beginning and end of the intermodal 
transport chain. ese operations involve the collection and delivery of empty or loaded containers between depots, 
terminals, and customers’ facilities, usually by road within the vicinity of an intermodal terminal. Reinhardt et al. 
[12] noted that pre- and end-haulage oen represent major bottlenecks in efficient liner shipping, primarily due to 
poor coordination among customers. Similarly, Chen [13] emphasized that while long-haul intermodal transport 
leverages multiple transport modes, the most critical component for enabling true door-to-door service is the 
container port drayage operation.  erefore, this research contributes to more efficient drayage operations by 
investigating how optimization techniques can help to reach this goal. 

In drayage operations, decisions relate to which truck has to pick-up a container at the terminal and deliver it to its 
destination inland, or to pick-up a container at an inland depot or site and deliver it to the terminal, or first pick-up 
a container at the terminal, deliver it to its destination, and then drive empty to the next pick-up point and deliver 
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that container to the terminal. When the set of containers to be picked up or delivered is given, including their 
locations, the transport company aims to fulfil the services either with the lowest distances travelled or in the shortest 
time. Finding the best solution is finding the solution to a problem called the ‘Vehicle Routing Problem’ (VRP), 
which is used a lot in distribution where a truck with finite capacity has a number of pallets or boxes on board to 
deliver it to a set of different customers. A similar problem appears when an empty truck visits some customer 
locations to pick-up boxes or pallets, taking into consideration the finite capacity of the truck. Sometimes, the same 
truck can pick-up and deliver goods in one route. at is a more complex problem because the truck capacity has to 
be respected at each customer location. In such a case, the problem is called a ‘Pick-up and Delivery Problem’. In our 
case, there is only one box on board, i.e. the container. erefore, this specific case is called the ‘Full-Truckload Pick-
up and Delivery Problem’ (FTPDP). In practice, trucks cannot just arrive at the terminal or the customer location 
without planning. is means that containers have to be picked-up or delivered in a specific time period of the day, 
called a ‘time window’. e addition of the time window may appear due to different reasons: arrival or departure of 
the ship or train at a terminal, opening hours of the customer location, or a more specific planning system at the 
customer location to avoid trucks queueing up to pick-up or deliver a container. By including this feature in our 
decision problem, the problem can be called a ‘Full-Truck Pick-up and Delivery Problem with Time Windows’ 
(FTPDPTW). Also note that trucks do multiple trips per day, which complicates the planning given the time 
windows and travel distances. 

Caris and Janssens [14] modeled container drayage within an intermodal terminal's service area as a Full Truckload 
Pickup and Delivery Problem with Time Windows (FTPDPTW). e Pickup and Delivery Problem (PDP) extends 
the classical Vehicle Routing Problem (VRP) by allowing customers to both send and receive goods. In the FTPDP 
variant, each vehicle transports a single load—in this case, a single container. Gronalt et al. [15] studied full truckload 
transportation between distribution centers. While their Pickup and Delivery Problem with Time Windows 
(PDPTW) involved goods moved directly between customers, the problem addressed here assumes all container 
movements either originate from or return to the terminal. 

e VRP is a highly studied problem in the field of Operations Research and Logistics, because it has so many 
different applications and, by this, the VRP offers many variants in the literature. is also means that several reviews 
on the VRP literature have been published to help scientists and practitioners find their way in the many variants. 
An extended taxonomy of the problems has been published by Eksioglu et al. [16], and extended by the highly-cited 
literature review by Braekers et al. [17]. e published material is so large that specialised reviews have appeared, for 
example, in the field of the full-truckload VRP [18], reverse logistics [19], two-echelon VRP [20], and VRP with 
multiple commodities [21].  

In the Operations Research community, the Vehicle Routing Problem (VRP) is considered an NP-hard problem, 
which means that no polynomial algorithm exists to solve the problem. Finding optimal solutions for such problems 
are large would take very long computation times or even not able to find the solution. As the VRP belongs to this 
class, all extra additions to the problem, like the introduction of time windows, make it even worse. Because the 
VRPs are operational problems, that need a solution at least one time per day (or sometimes at a higher frequency), 
exact algorithms are no option. Operations Researchers make use of, what they call, metaheuristics. A metaheuristic 
is a higher-level procedure to select and tune a heuristic that provides a sufficiently good solution to an optimization 
problem. at solution may be the optimal one, but not sure. e single solution approach modifies and improves a 
single candidate solution. Well-known metaheuristics of this type include tabu search, simulated or deterministic 
annealing, and iterated local search. e population approach maintains and improves multiple candidate solutions. 
Well-known metaheuristics of this type include evolutionary algorithms, like genetic algorithms, and particle swarm 
optimization. A history of metaheuristics has appeared in [22]. 
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Also, this study makes use of a metaheuristic algorithm. e choice for such an algorithm is at the same time easy 
and difficult. ere exists no best metaheuristic for a specific problem. erefore, the choice is open and researcher 
have to experiment to choose an algorithm that suits their problem. Many researchers make their choice in the early 
developed algorithms, even if today new metaheuristics are being developed, be it mostly with less added value. is 
study adopts the Deterministic Annealing (DA) algorithm due to its proven effectiveness in previous research 
involving Vehicle Routing Problems with Time Windows (VRPTW). Several studies have demonstrated successful 
applications of DA in solving various types of VRPs [23], [24], [25]. Additionally, the DA heuristic has shown strong 
performance in addressing another VRP variant—the dial-a-ride problem [26], [27]. 

e algorithm is used in this study to run experiments to investigate the influence of time windows on the solution. 
Time windows make logistics routing decisions more difficult. Especially, this is the case, in which customers can 
select a time window in which they want their container to be delivered. When more customers select a time window, 
the dispatching company has less flexibility to construct its delivery routes [28]. When using metaheuristic 
algorithms to solve scheduling problems with time windows, the optimization algorithms are confronted with less 
feasible solutions, which leads to additional checks for feasibility during the algorithm runs. While several studies 
have analysed the drayage operations in intermodal transport, little attention has been given to how the 
characteristics of time windows influence the performance of the metaheuristic algorithm. For example, how should 
the algorithm behave when time windows are more concentrated in the morning than in the aernoon? Also, how 
should the algorithm respond when longer time windows are predominantly scheduled in the morning and shorter 
ones in the aernoon? Investigating such scenarios requires specific characteristics to describe the set of time 
windows across all pick-up and delivery operations. Since no prior studies have addressed this type of analysis, these 
characteristics are not available in the existing literature and therefore must be defined as part of this research. For 
the first time, time window characteristics are identified based on concepts borrowed from another discipline, i.e. 
economic geography: concentration and specialization, which will be explained in the Methods section. e research 
hypothesis states that the presence or absence of concentration and specialization of time windows might influence 
the behaviour of the metaheuristic, and therefore also the cost of the final solution. 

METHODS 

e method used in the research is an experiment with the use of a metaheuristic optimization algorithm – the 
deterministic annealing algorithm –, which has proven to be effective in this type of problem. e experiment relates 
to the characteristics of the time windows which are the main driver in the research. erefore, this methodological 
part includes the description of: (1) the algorithm to solve the FTVRPTW problem; (2) the experimental setting, 
which includes the concept of the experimental idea and the choice of the parameters for the experiments. 

Description of the Algorithm 

e algorithm comprises three main phases: (1) construction of an initial solution with an insertion heuristic, (2) 
improvement of the initial solution using a local search heuristic, and (3) further improvement of the result from 
step 2 with a deterministic annealing metaheuristic. e algorithm is identical to the one used in [29]. A detailed 
explanation is omitted in this section. A more detailed explanation is added in Appendix, including the values of the 
parameters of the algorithm.  

Insertion Heuristic 

A heuristic approach based on merging pickup and delivery customers is used to generate initial solutions. is 
process follows a two-stage insertion heuristic. In the first stage, pickup and delivery customers are paired while 
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considering hard time windows and limited waiting times between each delivery and its corresponding pickup. ese 
pairs are evaluated and ranked using four weighted criteria: the time window overlap between customers, travel time 
savings from pairing them, the opportunity cost of not selecting the optimal pair, and differences in time window 
slack. In the second stage, routes are constructed sequentially. Vehicles are assigned in order of increasing fixed costs, 
and customer pairs are inserted into routes based on the ascending order of their latest start times. Further details 
on the insertion heuristic can be found in the Appendix. 

Local Search Improvement Heuristic 

To enhance the feasible solution generated by the insertion heuristic, a local search method is applied. ree 
neighborhood structures are defined to explore solution improvements. e CROSS operator exchanges customer 
pairs between different routes, refining the pairing from the initial insertion phase. e COMBINE operator merges 
two separate routes into a single one, potentially reducing the number of vehicles used. e INSERT operator 
relocates customers from one route to another to improve overall efficiency. ese neighborhood operations are 
specific instances of the general λ-exchange mechanism described in [30]. Further details on the local search 
improvement heuristic can be found in the Appendix. 

Deterministic annealing metaheuristic 

In a subsequent optimization step, the Deterministic Annealing (DA) algorithm is employed to refine the solutions 
obtained from the local search improvement heuristic. Also known as "threshold accepting", DA was pioneered as a 
deterministic alternative to simulated annealing (SA) [23]. In DA, a neighbouring solution with a worse objective 
value is accepted if the difference in cost between the new solution C(S’) and the current solution C(S), Δ = 𝐶𝐶(𝑆𝑆′) −
𝐶𝐶(𝑆𝑆) is smaller than a deterministic threshold value T. is study adopts the implementation strategy outlined in 
[25]. e ultimate solution obtained from the multilevel local search heuristic serves as the starting point for the DA 
algorithm. 

e three local search operators—CROSS, COMBINE, and INSERT—are integrated into the DA (Deterministic 
Annealing) framework. Routes are explored in a fixed sequence, with each iteration starting from a randomly 
selected route. For each pair of routes, at most one move per operator is accepted per iteration. e DA algorithm 
follows a first-accept strategy, while the local search heuristic selects the best move.  e threshold value 𝑇𝑇 is initially 
set to a maximum value of Tmax. In each iteration, the threshold value T is decreased by ΔT units if no improvement 
in the objective function value is achieved. Once T reaches zero, it is reset to r × Tmax, where r is a random number 
between 0 and 1. If no improvement is observed aer a predefined number of iterations and T reaches zero again, 
the algorithm restarts with the currently best solution, Sbest. e process is repeated for a predefined number of 
iterations. Further details on the Deterministic annealing metaheuristic can be found in the Appendix. 

Experimental Design 

Basic Concepts for e Experimental Setting 

e drayage problem examined in this study encompasses both spatial and temporal dimensions. e spatial aspects 
pertain to geographical characteristics, such as the size of the area trucks must cover to or from the terminal, the 
customer density within that area, and the spatial distribution of customers—whether they are uniformly dispersed 
or clustered in specific regions. e temporal aspects involve the nature of the time windows, including the 
proportion of customers assigned a time window and the duration of these windows. Each of these factors can 
potentially affect the performance of the metaheuristic used to solve the problem. 
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a) e case of no specialization, no concentration 

 

 
b) e case of specialization 

While the influence of spatial factors has been relatively well explored, studies focusing on the temporal dimension—
particularly the collective characteristics of the full set of time windows—remain limited. It is generally understood 
that longer time windows provide greater scheduling flexibility, whereas shorter or tighter time windows increase 
the complexity of route planning, oen resulting in more infeasible combinations and a higher number of trucks 
required. However, to our knowledge, no research has systematically analyzed the structure of the entire set of time 
windows. 

e configuration of time windows may have varying effects on performance. For example, a mix of short and long 
time windows may produce different outcomes depending on whether short windows are concentrated in the 
morning and longer ones in the aernoon, or if both are evenly distributed throughout the day. Furthermore, the 
proportion of short versus long time windows may also influence algorithm performance. ese temporal dynamics 
may interact with spatial characteristics, raising further questions: Do the effects of temporal factors remain 
consistent when the same number of customers is distributed across a large geographical area as opposed to a smaller 
one? Understanding these interactions is essential to fully assess the behavior and effectiveness of the metaheuristic 
in solving the drayage problem.   

To understand how these spatial and temporal aspects influence the behavior of the algorithm and its final results, 
this study sets up some experiments. In the experiments spatial and temporal characteristics take different values, in 
such a way that differences in performance can be explained by the changes in the characteristics. As there are some 
random choices during the algorithm process, some replications of the same set of characteristics are required. e 
results of the replications are statistically analysed to decide whether the effect is real or might have appeared by 
chance. e performance is measured in two ways: (1) the total cost of the routing plan (at different monitoring 
points in the algorithm) and (2) the running time of the proposed algorithm. To monitor this process, a few 
monitoring points are established during the algorithmic process. More specifically, the algorithm is tested using two 
concepts borrowed from the discipline of Geographical Economics: specialization and concentration. e concepts, 
in the context of geographical economics, can be studied in more detail in [31], but are also briefly explained here. 

In geographical economics, geographical regions are compared to the spatial distribution of economic activity. 
Concentration refers to the question of how economic activity (e.g. a particular industry or manufacturing sector) is 
distributed in space. Specialization refers to the question of whether or not the share of a region is relatively large 
compared to the share of other regions. Assume the case, in geographical economics, where they talk about two 
regions and two types of industries. Both concepts, concentration, and specialization, are illustrated using parts of 
Figure 1: the two boxes represent two regions, and both industries are represented by white and black dots. Figure 
1a) shows the case of no specialization, no concentration. Both regions contain as many white as black dots. Figure 
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c) b) e case of concentration 

Figure 1. Illustration of the concepts specialization and concentration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1b) illustrates the concept of specialization: the le region contains all the black dots, and the right region the white 
dots. Figure 1c) illustrates the concept of concentration: the le region contains more dots than the right region. 

In our case, the concepts get a different meaning. e ‘regions’ are translated into two periods of the working 
day and two types of time windows (long and short): 

1. The length of the time windows: two options ‘short’ and ‘long’; 
2. The concept of specialization: shorter are in one period, and longer in the other; 
3. The concept of concentration: more time windows in one period and less in the other. 

Parameter Setting 

e experimental setting is generated synthetically, without any link to a real-life situation. e choices for the 
parameter setting are fully based on the objective of the study: to clearly distinguish which spatial or temporal 
characteristics have a significant influence on the performance of the algorithm. e choices are motivated in 
the next paragraphs in the context of this objective. 

e experiments in the study are run on a set of 100 customers, of which there are 50 pickup customers and 50 
delivery customers. e data sets differ in terms of geographical spread, i.e. the customers are spread over a smaller 
or larger area. e smaller area is defined, for both x and y coordinates to be in the interval [0,25]. For the larger 
area, this interval is [0,50]. e depot is located in the central point of the area. e instances of customer locations 
are randomly generated. e choice for two areas, of which one is four times bigger than the other, will show the 
influence of distances between the terminal and the customer, or between one customer and another. It is expected 
that trucks can handle more customers if distances are smaller, but time windows may disturb this simple reasoning. 
e working day is considered to be 480 minutes and, for experimental reasons, the day is split into two-time frames: 
frame 1 from time 0 till 240, and frame 2 from time 240 till 480. e choice for these values is completely artificial, 
but it might represent an 8-hour working day. e split into two-time frames is necessary for measuring the effect of 
concentration and specialization, as will be explained further on. 

Two types of time window lengths are chosen: short ones and long ones. As stated earlier, longer time windows allow 
for better planning and less costs. But in understanding what is long and what is short, this study has made two 
versions. Two specific sets of time window lengths are chosen: (1) 60 time units for the short ones and 150 time units 
for the long ones; and (2) 30 time units for the short ones and 75-time units for the long ones. e two sets differ 
from each other in such a way that the second set has tight windows, which is expected to make efficiency more 
difficult. However, the ratio between long and short lengths is kept equal to 2.5 for a fair comparison. Time window 
lengths are fixed; this means that their lengths are not generated at random. Time windows are located at a random 
point in time in either the first or the second time frame, but in such a way that there appears no overlap of the time 
window over both frames. For example, a short time window of 60 time units can have its random start in the interval 
[0, 180] for the first frame (as it ends before 240) and in the interval [240, 420] for the second frame. 
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Figure 2. Visualisation of the spread of time windows in the case of concentration and no specialization 
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The case of concentration and no specialization

From the set of 100 customers, 50 have a short time window and 50 have a long time window. In the case of no 
specialization, and no concentration, time frame 1 hosts 25 short and 25 long time windows; the same is true for time 
frame 2. In the case of specialization, no concentration, time frame 1 hosts 40 short and 10 long time windows, while 
time frame 2 hosts 10 short and 40 long time windows. In the case of concentration, no specialization, time frame 1 
hosts 40 short and 40 long time windows, while time frame 2 hosts 10 short and 10 long time windows. In the case 
of specialization and concentration, time frame 1 hosts 40 short and 20 long time windows, while time frame 2 hosts 
10 short and 30 long time windows. 

e experiments are run on a laptop Lenovo model Z50 with Intel® Core™ i7-4510U CPU @ 2.00GHz – 2.60GHz 
and installed RAM 8GB (shared with on-board Graphic Processing Unit). e program is written in C++ using the 
MinGW compiler with g++ (GCC) 7.1.0 Copyright© 2017 Free Soware Foundation, Inc. e computing times of 
the algorithm are very small. Depending on the experimental situation, they are situated in the interval [1.0, 3.6] 
seconds for a set of 100 customers. e algorithm, based on the DA metaheuristic is not exponential, so even if the 
number of customers is tenfold (which is not realistic in nearly all container terminals), the algorithm can be run on 
a PC and does not need any high-level computing equipment. 

Visualisation of Experimental Instances 

Figures 2 and 3 visualise the concepts of specialization and concentration in this research. Both figures show only the 
midpoints of the time windows. Figure 2 shows the case of concentration and no specialization: more time windows, 
both short and long, appear in the first time frame (0-240). Figure 3 shows the case of specialization and no 
concentration: more short time windows in the first time frame (0-240) and more long time windows in the second 
time frame (240-480). At first sight, it might look like the long time windows are more centred. is is not the case 
as the midpoints of the time windows are shown. at means that, for the long time windows, the window extends 
both to the le and the right side of the midpoint with 75 time units, while, for the short time windows, this extension 
amounts to only 30 time units. 

RESULTS AND DISCUSSION 

e instances, which are chosen from the input data, refer to what we call ‘geographical instances’, i.e. a set of x-y 
coordinate pairs for the pickup and delivery customers. e customers are uniformly randomly distributed over the 
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Figure 3. Visualisation of the spread of time windows in the case of specialization and no concentration 
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area under study.  For the experimental runs, the concept of ‘instance’ should be understood wider as also time 
windows are included. e time windows are generated according to the criteria and scenarios, mentioned in the 
‘Parameter setting’ section. Two geographical instances are chosen from the smaller area ([0,25] by [0,25]) and two 
from the larger area ([0,50] by [0,50]). 

For each geographical instance, four scenarios are tested (no specialization and no concentration; specialization and 
no concentration; concentration and no specialization; specialization and concentration). Furthermore, two sets of time 
window lengths are used. While the algorithm (including the DA metaheuristic) has fewer random elements than 
using the Simulated Annealing metaheuristic, some random choices appear and therefore several replications are 
required. e variance of the results from the replications will be a crucial factor in the statistical analysis. e 
number of replications has been set to 5, which is an arbitrary choice. Five replications per (geographical 
instance/time windows scenario)-combination is required for statistical confidence of the different scenarios. at 
means that 4 * 5 = 20 experimental runs are required per geographical instance, per time window length set. So, in 
total 4 * 2 * 20 = 160 run outputs are collected and analysed. e results for the four geographical instances, combined 
with two time window length sets, are investigated separately in this experimental results section. e customer 
locations of the four geographical instances are generated independently of each other, so that is why the results are 
discussed separately. 

e performance of the algorithm is compared and analysed through seven indicators or outputs. ey are (1) initial 
number of routes (IniRoutes); (2) cost of the initial solution (IniCost); (3) number of routes aer the local search 
(LSRoutes); (4) cost of the solution aer local search (LSCost); (5) final number of routes (FinRoutes); (6) cost of the 
final solution (FinCost); and (7) Run time (in seconds). Indicators 1 to 4 and 7 are more of an academic nature to 
investigate how the algorithm behaves in its subsequent steps. Indicators 5 and 6 are useful for the practitioner (and 
also for academic interest). e factorial design is simple as only two factors are involved each with two levels: 
specialization (with and without) and concentration (with and without). But it may be that the influence of the 
presence or absence of concentration is different for the cases with specialization or without specialization. erefore, 
the interaction effect between both factors is also analysed to consider whether the interaction of both factors affects 
the output. 

As the experiments register outcomes of seven dependent variables, a multivariate analysis of variance (MANOVA) 
is a suitable statistical analysis technique. e mean differences in the outcomes between the two levels of the factors 
need to be tested for significance. Differences are considered statistically different at a 95% confidence level. e 
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Table 1. p-value of the factorial design of the output of the experiments located in the small area 

Scenarios Output TW lengths 1 TW lengths 2 

1 2 1 2 
Specialization IniRoutes 0.000* 0.000* 0.569 0.355 

IniCost 0.129 0.161 0.489 0.089 
LSRoute 0.008* 0.002* 0.027* 0.229 
LSCost 0.000* 0.035* 0.850 0.241 
FinRoutes 0.012* 0.000* 0.042* 0.176 
FinCost 0.000* 0.001* 0.642 0.436 
Run time 0.018* 0.886 0.000* 0.013* 

Concentration IniRoutes 0.000* 0.000* 0.150 0.553 
IniCost 0.153 0.533 0.618 0.008* 
LSRoute 0.008* 0.005* 0.027* 0.542 
LSCost 0.263 0.448 0.717 0.118 
FinRoutes 0.000* 0.000* 0.003* 0.604 
FinCost 0.094 0.338 0.950 0.226 
Run time 0.263 0.042* 0.111 0.256 

Specialization * Concentration IniRoutes 0.000* 0.002* 0.004* 0.196 
IniCost 0.169 0.286 0.238 0.096 
LSRoute 0.008* 0.014* 0.011* 0.400 
LSCost 0.104 0.000* 0.433 0.002* 
FinRoutes 0.000* 0.000* 0.001* 0.176 
FinCost 0.011* 0.000* 0.161 0.085 
Run time 0.459 0.173 0.009* 0.005* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

choice for this confidence level is a bit arbitrary but it is common in a lot of research studies.  It means that there is 
a 5% risk of concluding that an influence exists when there is no actual influence. is risk is reflected in p-values, 
produced by the MANOVA. If the p-value is less than 5%, we can conclude that the difference between the means is 
statistically significant.  Tables 1 and 2 show the p-values for both main effects and the interaction effect on the four 
geographical instances, obtained from a multivariate analysis of variance (MANOVA). Table 1 exhibits the values for 
the instances generated in the small area. Table 2 indicates the values for the instances created in the large area. 

A first observation, that can be made, is that many more significant influences can be found in the instances from 
the higher set of time window lengths (long = 150, short = 60) compared to the lower set of time window lengths 
(long = 75, short = 30). In Tables 1 and 2, the higher set is indicated as TW_lengths_1 and the lower set at 
TW_lengths_2. By counting the number of statistically significant values in Tables 1 and 2 (indicated by an * next to 
the value), we learn that the higher set of time window lengths shows 54 significant results, while the lower set shows 
only 20 significant results. erefore, we concentrate on the higher set, but focus, from time to time, on the lower 
set. Regarding the main effects, it can be stated that specialization and concentration do not affect the cost of the 
initial solution. On the run time, no significant influence is shown in the large area and only sporadically in the small 
area. e explanation, further on, concentrates on the other dependent variables. 

For the significant cases, indicated in Tables 1 and 2, Tables 3 and 4 show the direction of the effect. For the scenario 
of specialization (resp. concentration), the tables show the effect on the variables. If specialization (resp. concentration) 
is present, the tables show whether it leads to a higher value (H) or a lower value (L). For the scenario of interaction 
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Table 2. p-value of the factorial design of the output of the experiments located in the large area 

Scenarios Output TW lengths 1 TW lengths 2 

1 2 1 2 
Specialization IniRoutes 0.004* 0.001* 0.229 0.058 

IniCost 0.756 0.583 0.000* 0.014* 
LSRoute 0.003* 0.036* 0.381 0.139 
LSCost 0.006* 0.001* 0.555 0.195 
FinRoutes 0.115 0.000* 0.479 0.290 
FinCost 0.001* 0.000* 0.540 0.429 
Run time 0.769 0.553 0.062 0.200 

Concentration IniRoutes 0.000* 0.000* 0.325 0.358 
IniCost 0.585 0.876 0.082 0.112 
LSRoute 0.000* 0.036* 0.653 0.285 
LSCost 0.000* 0.009* 0.001* 0.013* 
FinRoutes 0.000* 0.000* 0.658 0.585 
FinCost 0.000* 0.000* 0.042* 0.000* 
Run time 0.286 0.229 0.374 0.206 

Specialization * Concentration IniRoutes 0.004* 0.001* 0.386 0.319 
IniCost 0.390 0.831 0.012* 0.284 
LSRoute 0.001* 0.015* 0.653 0.425 
LSCost 0.000* 0.887 0.367 0.156 
FinRoutes 0.000* 0.000* 0.579 0.403 
FinCost 0.000* 0.483 0.130 0.164 
Run time 0.357 0.290 0.078 0.188 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

between specialization and concentration, the tables show which combination, out of four, leads to the highest value 
of the variables involved. 

Tables 3 and 4 show that the effect of specialization is not always consistent, but the effect is more consistent in the 
samples with large areas. Note that in the large area for the shorter time window lengths, only one output variable 
shows significance (Initial cost). In the small area samples, more significance appears in the shorter time window 
length set, but the direction is consistent with the longer time window length samples. In contrast, the effect of 
concentration is consistent, showing that in the significant cases, concentration leads to a higher number of routes 
and costs, in the longer time window length set. In the set of examples with shorter time window lengths, the 
significance is lower, but when it is significant, it is consistent with the set with longer time window lengths (except 
in the case of the Initial Cost variable). For the examples with longer time window lengths, the effect of the 
Interaction between the two concepts is consistent, except for the Final Cost variable. It can be seen that for all other 
significant variables, the highest values for the number of routes and the costs occur with no specialization, but with 
concentration. is also applies to the set with shorter time window lengths, while there are fewer significant cases. 
ere is only one exception for the output variable LSCost. 

Table 3 presents results for the small area scenario, where shorter distances are involved. In the absence of time 
windows, one might logically expect that more customers could be served within the terminal’s opening hours due 
to reduced travel times. However, the presence of time windows—whether specialised, concentrated, or neither—
complicates this straightforward reasoning. From a practitioner’s perspective, focusing on the final cost and the 
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Table 3. e direction of the effect from specialization, concentration, and their interaction for the small area 

Scenarios Output TW lengths 1 TW lengths 2 

1 2 1 2 
Specialization IniRoutes L L   

IniCost     
LSRoute L L L  
LSCost H L   
FinRoutes L L L  
FinCost H L   
Run time L  L L 

Concentration IniRoutes H H   
IniCost    L 
LSRoute H H H  
LSCost     
FinRoutes H H H  
FinCost     
Run time  H   

Specialization * Concentration IniRoutes NS, C NS, C NS, C  
IniCost     
LSRoute NS, C NS, C NS, C  
LSCost  NS, C  S, NC 
FinRoutes NS, C NS, C NS, C  
FinCost S, C NS, C   
Run time   NS, C NS, C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

number of routes, the table reveals that specialization leads to a reduction in the number of routes (denoted as L), 
while concentration leads to an increase (denoted as H). Consequently, it is consistent that the highest number of 
routes occurs in the combination no specialization, concentration (NS, C). 

When it comes to the final cost, the results are less straightforward: specialization yields conflicting or insignificant 
outcomes, and concentration shows no significant cost effects. is suggests that, in concentrated scenarios, the 
algorithm compensates by creating more routes while maintaining a balanced or lower total cost. is outcome is 
naturally influenced by the fixed daily cost of vehicle use, which includes driver wages, maintenance, insurance, and 
depreciation. From an academic standpoint, it is noteworthy that the effects of specialization and concentration on 
the number of routes are evident from the very first phase of the algorithm (IniRoutes) and persist through to the 
final phase (FinRoutes).  

In terms of numerical data (which are not shown in Table 3), the presence of concentration leads, on average, to 
between 16% and 23% more routes and, when combined with no specialization, even to between 30% and 35%. e 
final cost in the case is specialization is only between 0.4% and 2% higher than without specialization and, in the case 
of concentration, the difference is not significant. It can be concluded that, in the case of concentration, the algorithm 
builds more but more efficient routes. Such a trade-off, of course, depends on the fixed daily cost of a vehicle. 

Table 4 presents the results for the large area scenario, where longer travel distances naturally lead to expectations of 
more routes and higher costs. However, the primary focus is on the effects of specialization and concentration, 
assuming constant travel distances. In these large-area cases, the influence of specialization remains unclear and 
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Table 4. e direction of the effect from specialization, concentration, and their interaction for the large area 

Scenarios Output 
TW lengths 1 TW lengths 2 

1 2 1 2 
Specialization IniRoutes L L   

IniCost   H H 
LSRoute L L   
LSCost H H   
FinRoutes  L   
FinCost H H   
Run time     

Concentration IniRoutes H H   
IniCost     
LSRoute H H   
LSCost H H H H 
FinRoutes H H   
FinCost H H H H 
Run time     

Specialization * Concentration IniRoutes NS, C NS, C   
IniCost   NS, C  
LSRoute NS, C NS, C   
LSCost NS, C    
FinRoutes NS, C NS, C   
FinCost NS, C    
Run time     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

inconsistent across scenarios. In contrast, the effect of concentration is much more pronounced: when significant, it 
consistently leads to higher values across all dependent variables. Moreover, the combination of no specialization, 
concentration tends to further amplify these values, where statistically significant. e most notable finding is that 
concentration consistently results in higher final costs across all scenarios. While the increase may appear modest—
only a few percentage points—it is statistically significant. Given the typically low profit margins in the transport 
sector, even small cost increases are economically meaningful. 

In terms of numerical data (which are not shown in Table 4), the presence of concentration leads, on average, to 
between 18% and 19% more routes. Specialization leads to 15% fewer routes. e final cost in the case is specialization 
is, on average 3% higher than without specialization. In the case of concentration, the presence of concentration is on 
average 2% higher compared to the case of no concentration. 

Confidence in the algorithm’s suitability has increased through extensive experimentation. Previous studies 
demonstrated that the algorithm produces final routing solutions that closely approximate the optimal outcome. 
However, it is important to note that these validations were conducted on small-sized problem instances, as the 
problem sizes addressed in this study are too large to yield optimal solutions within a reasonable computation time. 
Regarding run time—one of the seven dependent variables—the algorithm consistently delivers solutions within a 
few seconds. Moreover, Tables 3 and 4 show that the two investigated characteristics, specialization, and 
concentration, have minimal impact on run time. e only exception is in the small area scenario, where 
specialization slightly reduces run time, indicating a positive effect. 
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A Note on e Set-Covering Formulation 

Already 60 years ago, the VRP was formulated as a set covering problem [32]. e authors claim that, if the capacity 
of a truck can be expressed by an integer number, all feasible routes can be enumerated and then a set covering 
problem can be solved. e idea is the following. Let the index set be the set of all routes and let each route have a 
cost associated with it. At that time, the problems that could be solved were rather small. 

In the set-covering formulation of the VRP with time windows (VRPTW), the objective is to select a minimum-cost 
set of feasible routes such that every customer is included in some route. It can also be formulated as an integer 
programming problem. It has been used to develop heuristics for some routing problems [33]. However, the set of 
all feasible routes is extremely large and it is difficult to generate them completely. Even if this set is given, the set 
covering problem becomes a large-scale integer program. 

e set of routes is smaller in routing problems than in full-truck routing problems due to the simplicity of a single 
load. e instances in this study have 50 pickup and 50 delivery customers. is means that 2500 pickup and delivery 
combinations are possible without considering time windows and an additional 100 trips can be realised by including 
only one pickup or one delivery in the trip. By taking time windows into account, the number of feasible 
combinations and individual pick-up/delivery trips is significantly smaller. ese orders of magnitude can be 
handled perfectly by today’s optimization soware. Even the case with two container sizes (20-foot and 40-foot 
containers) can be formulated as a set covering problem and solved efficiently [34]. However, the solution resulting 
from such a covering problem does not provide a solution for our studied problem. It has been learned from the 
experiments that trucks make four to six pickup and delivery trips per day, so the assignment of each trip to a vehicle 
is much more complex than the set covering problem. e solution to the set covering problem can only be the 
optimal solution under two conditions: (1) the number of available vehicles is infinite, and (2) the fixed cost of 
deploying a vehicle for an entire day is zero. ese conditions are far from realistic and cannot be applied in this 
study. e problems, similar to the one under study, are called multi-trip problems or vehicle routing problems with 
multiple trips [35]. 

CONCLUSION 

In this study, the deterministic annealing (DA) algorithm has been chosen to solve the Full-Truck Vehicle Routing 
Problem with Time Windows (FTVRPTW). To classify the types of time windows, two concepts named 
specialization and concentration have been introduced. e findings indicate that while specialization was anticipated 
to be a significant factor, the experimental results revealed inconsistent outcomes. is inconsistency warrants 
further investigation, and potentially, the development of improved or alternative descriptors. On the other hand, 
the concentration leads to a higher number of routes in the final solution and also to higher costs in larger areas. 
Additionally, the interaction effect between concentration and specialization leads to a higher final number of routes 
and higher costs when concentration is not accompanied by specialization. For practitioners, this study has 
demonstrated that higher levels of concentration in time windows lead to an increase in the number of trucks 
required and in overall costs. us, cost savings may be achievable by reducing such concentration. When data reveal 
high concentration, it may be worthwhile to negotiate with certain customers to shi their pick-up or delivery times 
to other parts of the day. Alternatively—and universally beneficial—relaxing customer time windows can 
consistently improve routing efficiency. 

It is important for the reader to recognize that this is a novel approach and that other, yet-to-be-defined 
characteristics may also prove relevant—posing an open question for future research. While we are confident in the 
effectiveness of the metaheuristic employed in this study, alternative approaches may also perform well. Readers are 
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encouraged to select a metaheuristic that has shown success in similar problems and to invest time in tuning its 
parameters to suit their specific operational context. Future research could also explore the impact of clustered 
customer locations, such as those situated within the same industrial zone or city center. 
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Appendix: Detailed Description of e Algorithm 

e algorithm aims to minimize a cost function, which consists of two parts: a fixed part and a variable part. e 
fixed part represents the cost of using a vehicle for a day, independent of the distance that the truck is driving or the 
time it has to wait. e fixed cost per vehicle can be different for different vehicle types. In our experiments, the cost 
is the same for all vehicles. e variable part represents the cost of all trips, including the times to leave from and 
return to the terminal. e algorithm consists of three phases: (1) construction of an initial solution using an 
insertion heuristic; (2) improvement of the initial solution using a local search heuristic; and (3) improvement of the 
result obtained in step 2 using a Deterministic Annealing heuristic. In this appendix, the three phases are described 
in detail. 

Insertion Heuristic 

A two-phase insertion heuristic is described here to create initial solutions. Consider the case in which a truck needs 
to serve two customers. ey can both be of the type ‘pick-up customer’ or ‘delivery customer’, or they can be one of 
each type. Only when a pick-up customer is served aer a delivery customer, a truck can drive from one customer 
location to the other.  In this case, savings can be made in terms of time and cost. In the other customer combinations, 
the truck first has to return to the terminal before serving the second customer. 

In the first phase, pickup and delivery customers are combined into pairs of customers. Due to the existence of hard 
time windows, not every pickup customer and delivery customer can be combined into a feasible pair. Also, a limit 
is imposed on the waiting time between delivery i and pickup j. e pairs of pickup and delivery customers are 
ranked according to four criteria, including the time window slack between customers i and j (Criterion 1), savings 
in travel time obtained from serving delivery i and pickup j together (Criterion 2), an opportunity cost for not 
choosing the best combination for a delivery i or pickup j (Criterion 3), and the opportunity cost related to the time 
window slack is incorporated in the selection criterion, defined as the difference between the time window slack of 
the current combination and the smallest time window slack of delivery i or pickup j in any combination (Criterion 
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4). ese four criteria are aggregated by making use of weights. e experiments in this study make use of the 
following weights: w1 = 20, w2 = 5, w3 = 20 and w4 = 55.  

In the second phase, routes are constructed sequentially. Vehicles are used in increasing order of their fixed costs (if 
relevant). Pairs of customers are eligible to be inserted into routes in increasing order of their latest start time. A pair 
of customers can be inserted into an existing route k if vehicle k can start later than the time necessary to serve the 
customers already assigned and on condition that vehicle k can return to the terminal before the terminal closing 
time. 

Local Search Improvement Heuristic 

A local search procedure is applied to improve a feasible solution obtained by the insertion heuristic. ree 
neighborhoods are defined. First, the CROSS operator recombines pairs of customers of different routes. is 
operator improves the result of the pairing phase in the insertion heuristic. A second operator, COMBINE, joins two 
routes into one. Finally, customers are removed from a route and inserted into another route by the INSERT operator. 
e latter two search neighborhoods affect the result of the route construction phase of the insertion heuristic. 

ese neighborhoods mechanisms form special cases of the general λ-interchange mechanism, described in [24]. 
e CROSS operator is an example of a 1-interchange mechanism, which involves only a single customer of each 
route. Due to the CROSS operator, two routes may exchange either pickup customers or delivery customers of two 
pairs simultaneously. e INSERT operator represents a 2-consecutive-node interchange mechanism. Two 
consecutive customers, which constitute a pair in a single route are shied to another route. Similarly, the COMBINE 
operator may be seen as a n-consecutive node interchange mechanism. 

e CROSS operator works as follows. Two pairs of pickup and delivery customers, (g,h) and (i,j), are selected from 
two different routes. ese pairs are recombined into new pairs, (g,j) and (i,h). e CROSS move is checked for 
feasibility, taking into account their time windows. Further, it is checked whether the new pairs can be reinserted 
into the routes. Either (g,j) is inserted into the first route and (I,h) into the second, or vice versa. e heuristic selects 
the move with the largest improvement. e COMBINE operator works as follows. It checks whether two routes 
served by different trucks can be combined into a single route. Two routes can be combined if the last pair of the first 
route can be served before the latest starting time of the second route. is operator can reduce the number of trucks. 
e INSERT operator works as follows. It removes pairs of pick-up and delivery customers from their routes and 
reinserts them into another route. Pairs of customers can be inserted at the beginning of a route, between pairs of 
customers, or at the end. 

Deterministic Annealing Metaheuristic 

In a subsequent optimization step, the Deterministic Annealing (DA) algorithm is employed to refine the solutions 
obtained from the local search improvement heuristic. e three local search operators—CROSS, COMBINE, and 
INSERT—are integrated into the DA (Deterministic Annealing) framework. Routes are explored in a fixed sequence, 
with each iteration starting from a randomly selected route. For each pair of routes, at most one move per operator 
is accepted per iteration. e DA algorithm follows a first-accept strategy, while the local search heuristic selects the 
best move.  e threshold value 𝑇𝑇 is initially set to a maximum value Tmax. In each iteration, the threshold value T is 
decreased by ΔT units if no improvement in the objective function value is achieved. Once T reaches zero, it is reset 
to r*Tmax, where r is a random number between 0 and 1. If no improvement is observed aer a predefined number 
of iterations and T reaches zero again, the algorithm restarts with the currently best solution, Sbest. e process is 
repeated for a predefined number of iterations. 
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e DA meta-heuristic has several parameters: the maximum threshold value Tmax, the change in threshold value 
ΔT, the maximum number of iterations nimprove, and the predefined number of iterations without improvement nwi . 
In this study, the following values are used: Tmax = 1, ΔT = 0.025, nimprove = 1000, and nwi = 10. 
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