
ABSTRACT 

With a growing emphasis on cognitive processing in occupational tasks and the prevalence of wearable sensing devices, understanding 
and managing mental workload has broad implications for safety, efficiency, and well-being. This study aims to develop machine 
learning (ML) models for predicting mental workload using Heart Rate Variability (HRV) as a representation of the Autonomic Nervous 
System (ANS) physiological signals. A laboratory experiment, involving 34 participants, was conducted to collect datasets. All 
participants were measured during baseline, two cognitive tests, and recovery, which were further separated into binary classes (rest vs 
workload). A comprehensive evaluation was conducted on several ML algorithms, including both single (Support Vector Machine – 
SVM, and Naïve Bayes) and ensemble learning (Gradient Boost and AdaBoost) classiers and incorporating selected features and 
validation approaches. The ndings indicate that most HRV features differ signicantly during periods of mental workload compared 
to rest phases. The SVM classier with knowledge domain selection and leave-one-out cross-validation technique is the best model 
(68.385). These ndings highlight the potential to predict mental workload through interpretable features and individualized approaches 
even with a relatively simple model. The study contributes not only to the creation of a new dataset for specic populations (such as 
Indonesia) but also to the potential implications for maintaining human cognitive capabilities. It represents a further step toward the 
development of a mental workload recognition system, with the potential to improve decision-making where cognitive readiness is 
limited and human error is increased. 
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With the modern economy and the growth of technology and knowledge-based professions, the mental workload is 
one of the most widely invoked concepts in ergonomics research and practice because of the greater emphasis on 
cognitive demands [1]. It has become integral to various sectors including technology, finance, law, healthcare, and 
various professional services  [2]. is field increasingly requires critical thinking, problem-solving, data analysis, 
and other complex mental tasks. Mental workload, a specific facet of overall workload, delineates the delicate balance 
between task-imposed demands and an operator's ability to fulfil them [3]. Wickens' multiple resources theory 
further emphasizes the multifaceted nature of human information processing, illustrating how different resources 
can be exploited either simultaneously or sequentially. is theoretical construct assists system designers in 
predicting the compatibility or interference of simultaneous tasks. 

Within the context of human factors and ergonomics, mental workload, and cognitive load are oen interchangeable 
as both share a similar foundational concept regarding the amount of limited working memory for tasks [4], [5]. 
Cognitive load is a broader multidimensional construct that encompasses mental workload, mental effort, and 
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performance, each with a unique identity and can be manipulated through task design and instructions [6]. While 
mental workload focuses on task demands, mental effort denotes the devoted resources, and performance reflects 
task execution and can be assessed through specific metrics either during the task or thereaer. 

In an era surrounded by complex information and ubiquitous technology, the importance of understanding and 
managing mental workload continues to grow.  e ability to measure and identify mental workload states has broad 
implications for individual and organizational success, including maximizing safety, efficiency, performance, and 
well-being [7]–[9]. e challenge lies in developing a mental workload monitoring system that is objective, real-
time, and unobtrusive [10]. While self-report workload assessment such as NASA TLX has advantages primarily due 
to their ease and cost of administration, they are impractical in real-world applications, as they require explicit 
querying of use [7], [11]. Physiological signals, derived from the autonomous nervous system (ANS), offer a 
promising approach, given their objectivity, validity, non-invasive, and not interfering with the primary task [2], [9]. 
It has been also well-established as an indicator of mental workload fluctuations [2], [9]. Nonetheless, the utilization 
of physiological signals is not without its challenges. e approach is resource-intensive, requiring specialized, oen 
costly, technology and specific expertise for data validation and interpretation. Complex data collection and analysis 
processes further complicate its implementation [9], [12]. Besides, despite being labelled as 'non-intrusive,' these 
methods may require users to wear sensors or equipment attached to their body, raising concerns about user comfort 
and practicality. 

Interestingly, innovations in wearable technology offer a recent solution to some of these challenges. Devices such 
as smartwatches and chest straps are equipped with good validity sensors that can measure specific physiological 
signals [13], [14]. ese devices are designed to integrate seamlessly into daily life, allowing for real-time, continuous 
data collection without interfering routine activities. is may enhance the practicality and workers’ acceptability of 
physiological signal-based mental workload assessment methods. Moreover, recent progress in machine learning 
(ML) and Artificial Intelligence (AI) has significantly expanded the scope of human behaviour prediction systems 
[8], [15]. Importantly, ML and AI technologies offer the capability to address the complexity associated with 
collecting and processing physiological data for predicting mental workload [15], [16]. While models for stress 
detection are abundant (for review see [15], [17]), those focusing on cognitive or mental workload remain scarce. 
is distinction is critical as, despite sharing common physiological features, the underlying psychological 
mechanisms and activities for stress and mental workload are different [18], [19]. Stress oen arises from emotional 
or environmental aspects unrelated to cognitive demands, whereas mental workload is specifically tied to task-
specific requirements [18], [19]. Furthermore, the interpretation of what those features signify in the context of stress 
versus cognitive workload may be different.

Understanding Physiological Signals and HRV 

Fluctuations in cognitive load are manifested through changes in the autonomous nervous system (ANS), or 
physiological signals. An increase in psycho-physiological load—such as performing a demanding task—leads to 
heightened activation of the sympathetic nervous system and inhibition of the parasympathetic system, a response 
known as the "fight-or-flight" reaction. is triggers the release of hormones, specifically epinephrine, and 
norepinephrine, leading to physiological alterations. ese alterations were evidenced by changes in blood pressure, 
brain activity, skin conductance, respiration, and eye movement, accompanied by a reduction in heart rate variability 
(HRV) [2], [9], [20]. Conversely, the activation of the parasympathetic system and suppression of the sympathetic 
system initiates a process termed the "relax and digest" response, which induces the reverse physiological reactions 
to the fight-or-flight process [21], [22]. Research has demonstrated that HRV is not solely significant in the context 
of maintaining physical health but also in various aspects of well-being, including psychological health, cognitive 
function, and social interactions [23], [24]. 

As illustrated in Figure 1, HRV is calculated through beat-to-beat (RR interval) intervals in heart rate. It serves as a 
quantification of neurocardiac function and indicates bi-directional interactions between the heart and the brain, 
controlled by the ANS. 
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Figure 1. RR intervals, inter-beat intervals between all successive heartbeat 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Table 1. Summary of some HRV parameters based on their respective analysis domains [25] 

Analysis 
Domain 

Acronym Unit Description 

Time-domain HR Max − HR 
Min 

bpm e average difference between the highest and lowest heart rates 
during each respiratory cycle 

SDNN ms e standard deviation of successive NN interval differences 
pNN50 % Percentage of successive NN intervals that differ by more than 50 ms 
RMSSD ms Root mean square of successive NN interval differences 

Frequency 
Domain 

VLF power ms2 e absolute power of the very-low-frequency band (0.0033–0.04 H 

LF peak e peak frequency of the low-frequency band (0.04–0.15 Hz) 
LF power ms2 e absolute power of the low-frequency band (0.04–0.15 Hz) 
LF power nu e relative power of the low-frequency band (0.04–0.15 Hz) in 

normal units 
LF power % e relative power of the low-frequency band (0.04–0.15 Hz) 
HF power ms2 e absolute power of the high-frequency band (0.15–0.4 Hz) 
LF/HF % 

Non-Linear SD1 ms Poincaré plot standard deviation perpendicular to the line of 
identity 

SD2 ms Poincaré plot standard deviation along the line of identity 
SD2/SD1 % Ratio of SD1-to-SD2 

e analysis of HRV encompasses linear and non-linear domains. Table 1 provides a summary of HRV parameters 
in line with their respective analysis domains. ese measures—such as RMSSD, pNN50, and HF—reflect vagal 
inputs to the heart, with parameters like LF indicating a mix of sympathetic and vagal parasympathetic activities., 
while SDNN represents cyclic components responsible for HRV. e ratio of low- and high-frequency power 
(LF/HF) is an estimator of the balance between the sympathetic and parasympathetic systems. 

Related Work on HRV, Mental Workload, and Machine Learning 

In a recent review, cardiac activity emerges as a primary physiological measure of mental workload (MWL) [2], [9]. 
Heart rate and some HRV parameters can quantify changes in HRV during different levels of mental workload. For 
example, HR increases with increasing task demands and could differentiate between rest and task periods in a 
simulated flight task [26]. NN intervals were seen to decrease during a high-demand multi-attribute task when 
compared to a low-demand task [27]. Fallahi and colleagues [28] found the lowest SDNN, RMSSD, and pNN50 
when traffic control operators experienced high traffic density tasks, compared to baseline and low traffic density 
conditions. In the frequency domain, Veltman and Gaillard [29] stated that the MF band (0.07–0.14 Hz) is the most 
sensitive to changes in MWL while the effect in the LF band was observed by Splawn and Miller [30] at high task 
loads.  
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Table 2. Summary of Related Work on Cognitive or Mental Workload Prediction 

Lead 
Authors 

Subjects, 
Population, Task 
/ Scenarios 

Physiological 
Signals 

Feature 
Extraction / 
Feature 
Engineering 

Feature Selection 
& Final HRV 
Features 

Validation Class & Accuracy Scores 

Gjoreski 
[11] 

- N = 23, 
Europeans 
(nationalities 
/countries not 
specified)
- Task: CogLoad 

Test (variation 
of N-Back test)

ACC, GSR, 
TEMP, HRV 

Scaling: min-max, 
session-specific 
standardization 

Full data set vs 
Ranking method 
based on mutual 
information  

LOOCV Class: Cognitive load or not. 
ML & accuracy for session-
specific standardization: full 
features, selected features 
- RF: 66.8%, 67.9% 
- kNN: 63.6%, 64.0% 
- NB: 58.5 %, 57.0% 
- LR: 64.0 % & 65.7% 
- AdaBoost: 65.6% & 67.3% 
- DT: 67.4% & 68.2% 
- XGB: 65.5 % & 66.4% 

Pettersson 
[33] 

- N = 23, Finland
- Task: 

Maastricht 
Acute Stress 
Test

EOG, HRV Not specified - Sequential
Forward 
Floating Search
- Features: HR 

mean, HR std, 
RMSSD 

8-fold CV Class: baseline and task.
ML & accuracy: HRV, EOG 
+ HRV 
- SVM: 74.1 %, 85.9% 
- RF: 71.5%, 93.4% 
- XGB: 70.7%, 94.0% 

Giannakakis 
[32] 

- N = 24, Greece
- Task: social 

exposure, 
stressful event 
recall, cognitive 
load, stressful
videos 

HRV Without pairwise 
and Normalization 
using pairwise 
transformation 

- mRMR 
- 11- HRV 

features: mean 
HR, LF, NN50, 
LFnorm, HRstd, 
pNN50, LF/HF, 
RMSSD, 
HFnorm, total 
power, HRV
triangular index

10-fold CV Class: stress (including 
cognitive) no stress. 
ML & accuracy: without 
pairwise, aer pairwise 
- kNN: 66.7%, 73.8% 
- NB: 65.6%, 69.9% 
- SVM: 73.6%, 84.4% 
- RF: 75.1%, 70.0% 

Posada-
Quintero 
[31] 

- N = 16, USA
- Task: 

psychomotor 
vigilance task 
(PVT), n-back 
paradigm, and 
a visual search

HRV, EDA Not specified - Not specified
- 4-HRV features: 

LF, LFnu, HF, 
HFnu 

LOOCV Class: baseline, vigilance, 
working memory, visual 
search. 
ML & accuracy 
- KNN: 66% 
- Linear SVM: 62% 
- LDA: 62% 

Considering this association, researchers have been motivated to further utilize HRV as an index of cognitive 
processing through AI techniques [8], [31], [32]. In the machine learning domain, HRV-based models exhibit an 
accuracy rate that varies between 70-90% when combined with either other physiological signals or behaviors, and 
between 50-70% when using HRV exclusively [8], [32], [33]. Table 2 outlines prior studies related to cognitive load 
prediction based on HRV using various ML classifiers. e majority of protocols involved standardized cognitive 
tests such as the N-back test, Maastricht Acute Stress Test, and Psychomotor Vigilance Task, and only one study used 
a simulated task [34]. Moreover, most of the studies used multimodal signals including HRV, Galvanic Skin Response 
(GSR), electrooculography (EOG), and accelerometer. Prior studies also commonly employed full features or data-
driven techniques to select HRV features. Feature selection methods itself can be categorized into filter-based 
methods, wrapper-based methods, and embedded methods [33], [35]. So far, however, very few studies utilized the 
knowledge domain to select HRV features which may increase their interpretability. ere is a growing focus on the 
interpretability of models [36], [37],  challenging the common belief that black box models are necessary for 
achieving high accuracy. In the machine learning context, the black box refers to the lack of transparency in the 
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Table 2 (cont.) 

Lead 
Authors 

Subjects, 
Population, 
Task / 
Scenarios 

Physiological 
Signals 

Feature 
Extraction / 
Feature 
Engineering 

Feature Selection & Final 
HRV Features 

Validation Class & Accuracy 
Scores 

Ross [34] - N = 10, 
Canada 
- Task: 

Penetrating 
Trauma 
Simulation 

HRV, GSR Scaling: 
Normalized 
with baseline 
data 

- LASSO 
- 18 HRV Features, not 

explicitly mentioned aer 
selected

5-fold Class: Cognitive load 
between novice and 
experts. 
ML & Accuracy: HRV, 
HRV + GSR 
- SVM: 72.8%, 79.8% 
- DT: 63.3%, 78.0% 
- RF: 72.4%, 66.7% 
- kNN: 53.3%, 83.9% 

Notes: ACC=Accelerometer, TEMP = Skin temperature, EDA = Electrodermal Activity, EMG = Electromyography, RESP = Respiration, 
EOG = Electrooculogram, LASSO = Least Absolute Shrinkage and Selection Operators, CV = Cross-validation. LOOCV= Leave one 
out cross validation, PCA = Principal Component Analysis, RF = Random Forest, SVM = Support Vector machine, k-NN = K nearest 
neighbourhood, NB = Naïve Bayes, LR = Logistic Regression, XGB = Extreme Gradient Boosting, LDA = Linear Discriminant Analysis, 
DT = Decision Tree. 
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decision-making process and the internal processes used to achieve accurate prediction. erefore, the importance 
of developing models that are interpretable and transparent has become a priority.  

To our knowledge, there currently exists no publicly available HRV dataset specifically tailored to Asian populations, 
including regions such as Indonesia. Given that HRV is significantly influenced by ethnic characteristics, it is critical 
to develop and test various machine learning (ML) algorithms on population-specific data. is approach can 
potentially yield broader benefits across diverse sectors. Such a dataset is pivotal in advancing research, fostering 
innovation, and facilitating collaboration. By providing a common platform, it enables researchers, practitioners, 
and other stakeholders to work on shared goals[38]. 

Based on the above review, this research aims to develop machine learning (ML) models for predicting mental 
workload through HRV as a representation of physiological signals. Specific objectives include the evaluation of 
various ML algorithms, consisting of single classifiers and ensemble learning techniques, coupled with combination 
feature selections and validation strategies. e focus on an Indonesian population dataset for HRV-based prediction 
models establishes a novelty within the field. is research explores the use and promise of HRV-based models for 
predicting mental workload, making them relevant across various occupations and tasks that require significant 
cognitive effort. By highlighting the predictive value of physiological signals and investigating the interaction 
between machine learning and human behavior within a specific cultural context. 

Experimental Protocol 

Participants 

A total of 34 undergraduate students (age 19 – 24 years with the mean age of 21.9, standard deviation 1.38 years) 
took part in this study. e sample is a relatively balanced gender distribution (55.9% male). Among the participants, 
26.5% were identified as active smokers, and all individuals were right-handed. Eligibility for the participants was 
determined based on the following conditions: 1) absence of neurological, heart, or psychiatric disorders; 2) not 
under chronic medical treatment; 3) no known allergies to adhesive substances or rubbing alcohol. Participation was 
voluntary. Written informed consents were obtained from all participants before the initiation of the experiment. 
e experimental protocol adhered to the ethical principles of the Declaration of Helsinki and received approval 
from the Local Research Ethics Committee. 
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Figure 2. Switcher Featuring Task in PEBL Battery Soware [40] 
[e prompt delivered in Indonesia language (adjustable)] 

Experimental Task 
In this study, we assessed mental workload through standardized cognitive tests focusing on attention functions. 
Since attention and mental workload are closely intertwined, variations in attentional performance can provide 
insights into an individual's mental workload. When mental workload increases, it typically affects attentional 
capacities, making attention tests a reasonable proxy for assessing mental workload. Standardized tests facilitate a 
reliable way to evaluate mental workload which can be quantified and repeated under various conditions. Lastly, 
attention has several facets with several different types of tests that can detect subtle variances of mental workload, 
including selective, sustained, and divided attention  [24].  

e first cognitive task, the d2-Attention Test, delivered in a paper-and-pencil version. It is a neuropsychological test 
that assesses individuals’ selective and sustained attention [39]. Participants were requested to cross out the letter “d” 
with two apostrophe marks among various distractors within 14 rows of 47 letters. ey were given 20 seconds for 
each row to mark as many target symbols as possible and then move immediately to the next row.  e second task, 
the Switcher Featuring task, is a computerized cognitive test that is part of the Psychology Experiment Building 
Language (PEBL) [40]. e objective of this task was to assess cognitive flexibility and divided attention by repeatedly 
switching between rule dimensions [40]. As shown in Figure 2, during the task, participants viewed a 14-inch laptop 
screen displaying ten distinct colored shapes. Each shape shared only one common dimension with another object, 
such as color, shape, or letter. Participants were prompted to select a matching object based on a shape, color, or 
letter displayed at the top of the screen aer one object was circled. Subsequently, they were required to "switch" to 
a different feature, attempt to match the object based on that feature, and then return to the previous feature. 

e task was divided into three sessions, each consisting of nine blocks or alternative configurations. Within each 
block, participants made ten responses. e task was structured as follows: 

• Type 1: Condition Alternate Switch - In the first three blocks, participants switched between two of the three 
feature rules, with each block utilizing a different combination of pairs.

• Type 2: Condition Fixed Switch - In the subsequent three blocks, participants switched between the three feature 
rules in a consistent order, with the order changing for each block.

• Type 3: Condition Random Switch - In the final three blocks, participants switched between the three feature 
rules randomly, rendering the next rule unpredictable.

Before the main task, participants performed a brief practice round to familiarize themselves with the procedure. 
e main task lasted for approximately five minutes. 
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Figure 3. A general architecture of the mental workload prediction scheme employed in this study 

Experimental Procedure 

Aer obtaining consent from each participant, the experimental procedure started with the placement of a Polar H-
10 electrocardiogram (ECG) on the participant’s chest. is equipment was vital for recording the interbeat interval. 
Prior to the data collection, the participants were instructed to abstain from the consumption of caffeine, smoking, 
and heavy meals for a minimum of two hours before the session. is instruction aligned with the methodological 
consideration for HRV research [41].  

e experiment was divided into four stages, including baseline, two cognitive tasks, and recovery. For both the 
baseline and recovery measurements, participants were instructed to remain stationary in a sitting position for five 
minutes. e first cognitive task, known as the d2-Attention Test, was conducted for approximately five minutes. 
Subsequently, the Feature Switching Task was initiated, serving as the second cognitive task. Upon the completion of 
all stages, the sensors were removed, and participants were debriefed. 

Machine Learning Model Development 

Data Preprocessing 

Data preprocessing is a must-do step before training a model. Its primary objective is to check the quality of the data 
and to find important information that can affect the performance of learning models [42].  Within this preprocessing 
stage, various aspects of the dataset are addressed, including handling missing values, scaling, and standardization. 
ese procedures facilitate the preparation of the data, ensuring that it is ready for the learning process. e general 
architecture of machine learning model development for a mental workload prediction scheme is visually 
represented in Figure 3. 

Feature Extraction 

In our study, we utilized KUBIOS HRV Standard soware (Version 3.5.0, Kubios, Finland) to generate 24 HRV 
features from RR interval data. e 24 HRV-based features were categorized as seven features within the time domain 
(including RR, mean HR, min HR, max HR, SDNN, RMSSD, pNN50), 14 within the frequency domain (including 
total power, total power log, VLF absolute power, VLF log, peak VLF, LF absolute power, LF log, LF nu, peak LF, HF, 
HF log, HF nu, peak HF, and LF/HF) and three non-linear features (SD2, SD1, SD2/SD1). e computation of each 
HRV feature was conducted within a 5-minute moving window, following the procedure: initially, an inter-beat 
interval (IBI) signal was extracted from the peaks of the ECG signal for each subject. Subsequently, each HRV feature 
was computed within a 5-minute moving window, employing a non-overlapping configuration. is 5-minute 
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recording duration is a minimum recommendation to obtain a reliable frequency-domain index [25], [41]. e final 
data consisted of 136 instances (4 conditions × 34 subjects). 

Data Transformation 

Given the majority of our HRV data exhibited skewness and contained outliers, we implemented data scaling to 
enhance the efficiency, performance, and interpretability of ML models [43]. machine learning models. Specifically, 
Robust Scaler was utilized to standardize the data. is method involves the removal of the median and scales the 
data according to the interquartile range (IQR), defined as the range between the 1st quartile (25th quantile) and the 
3rd quartile (75th quantile). Such an approach is for datasets that include a significant amount of noise and may have 
outliers due to physiological phenomena such as ectopic beats [25], [44]. 

Feature Selection 

e performance of different classifiers depends on the features employed. e feature selection process is crucial to 
select the most important features, thereby improving classification outcomes and identifying a minimal feature set 
necessary to achieve predetermined classification accuracy [33], [35]. In this study, models were developed both with 
and without the application of feature selection methods. First, a set of 24 features, obtained through the use of 
Kubios soware, was employed. Second, a knowledge domain was utilized to selectively identify appropriate features. 
is selection was conducted based on the recommendation of prior cognitive and HRV studies [20], [22], [41]. is 
approach was aimed to increase the interpretability of the models [25], [36] e selected features encompassed 
features from both the time and frequency domain. To facilitate comparison, the minimum redundancy maximum 
relevancy (mRMR) was additionally performed. is filter-based feature selection method, as proposed by [35], has 
been previously documented within the scientific literature, specifically in the context of selecting features utilizing 
HRV features [32], [45]. is method selects a subset of features by optimizing Mutual Information Quotient 
criterion using the highest correlation with the target variable but the lowest correlation among themselves. e 
selection of features is performed iteratively, employing a greedy search method based on optimizing an objective 
function, thus balancing both relevance and redundancy [35]. 

Machine Learning Classifiers 

e development of models was conducted utilizing the following ML algorithms: Support Vector Machine (SVM), 
Naïve Bayes (NB), Gradient Boosting (GB), and AdaBoost. Recent reviews reveal that both single classifiers (e.g., 
SVM and Naïve Bayes) and ensemble learning models are the most prevalently employed techniques in HRV-based 
ML models[15], [17]. Generally, ensemble learning approaches have demonstrated superior predictive performance 
on supervised binary classification [46]. A brief description of each algorithm is as follows: 

Support vector machine is a discriminative model, designed to find the optimal hyperplane to segregate data into 
different classes, especially in a high-dimensional space [43]. Naive Bayes is a family of probabilistic classifiers that 
applies Bayes' theorem, operating under strong independence assumptions between features. It assumes that the 
value of a specific feature is independent of the value of any other feature, depending on the class variable. Both 
Gradient boosting and AdaBoost algorithms are among the most prevalent ensemble decision trees-based learning 
techniques. In Gradient Boosting, trees are constructed sequentially, with each tree having the same weight and 
trying to correct the errors of its predecessor. Conversely, in AdaBoost, trees have weights. e method automatically 
adapts its parameters to the data according to the actual performance in the current iteration. Both the re-weighting 
of the data and the final aggregation weights are recalculated iteratively. Gradient Boosting serves as a generic 
algorithm that helps in finding the approximate solutions to the additive modeling problem whereas AdaBoost was 
the first designed boosting algorithm with a specific loss function. Gradient Boosting is considered more flexible 
than AdaBoost [43]. Figure 4 illustrates a visualization of each algorithm used in this study. 

Validation Techniques 

In this study, we implemented two different validation techniques: leave-one-out cross-validation (LOOCV) and a 
hybrid method, which is a combination between LOOCV and the conventional train-test split test. In the LOOCV 
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Figure 4. Illustration of each algorithm applied. 
(Sources: SVM [47], Naïve Bayes [48], Gradient Boost and AdaBoost [49]) 

 

 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 

approach, each individual's HRV data is used once as the test set, while the remaining data points constitute the 
training set. is procedure is iteratively repeated for each data point, resulting in a number of separate learning 
experiments equivalent to the total data points. Such a procedure aligns well with the personalized approach, an 
essential issue when dealing with HRV data, given the unique characteristics of each individual’s HRV. Consequently, 
LOOCV can potentially offer a more accurate validation mechanism. However, it should be noted that despite 
presenting low bias, LOOCV can have high variance because the training sets are so similar to each other. Besides, 
with a large number of observations, LOOCV can be computationally expensive and time-consuming as the model 
must be trained N times (where N represents the number of observations). 

To address this issue, we utilized the hybrid technique that combines LOOCV and the train-test split test (in an 80: 
20 ratio). is technique allows for more comprehensive model validation. Using this technique, LOOCV was applied 
solely to the training set (80% of the data) while the remaining 20% serves as unseen data for testing. is strategy 
considers individual variability through LOOCV and provides an unbiased performance evaluation using a hold-out 
test set. Moreover, this technique has more computational efficiency compared to the LOOCV [50]. 

Performance Evaluation 

e evaluation of performance for each model was presented by its accuracy scores, an approach that quantifies how 
closely a model approximates the actual value. Accuracy is computed by the ratio number of correct predictions to 
the total prediction number [43]. For the classification tasks within this study, the scikit-learn library, a widely 
recognized tool in the field of machine learning, was employed[51]. 
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Table 3. Descriptive statistics and Results of Wilcoxon Test of HRV parameters 

Variable Condi-
tion 

Mean SD Median IQR Z- 
score 

Variable Condi-
tion 

Mean SD Median IQR Z- 
score 

RR R 740.56 91.44 720.50 80.00 -5.288*** LF R 904.13 740.11 584.00 716.25 -4.668*** 
W 702.69 93.32 708.00 110.75 

 
 W 571.28 465.38 418.50 558.50 

Mean HR R 82.19 9.55 83.00 8.75 -5.152*** LF log R 6.53 0.73 6.37 1.02 -4.568***  
W 86.91 11.88 85.00 13.50 

 
 W 7.78 14.08 6.05 1.23 

Min HR R 70.57 8.74 71.00 10.75 -6.341*** LF nu R 58.63 18.62 58.92 28.59 -0.611 
W 76.31 10.40 75.50 14.75  W 57.18 15.80 60.06 24.69 

Max HR R 100.46 10.75 100.00 14.75 -0.948 Peak LF R 0.08 0.03 0.08 0.06 -2.384* 
W 101.47 12.77 101.00 19.25  W 0.09 0.07 0.09 0.06 

SDNN R 42.67 17.38 37.55 23.78 -5.515*** HF R 816.01 1026.47 455.50 826.25 -3.853*** 
W 34.00 13.42 30.70 18.93  W 513.21 594.76 349.00 537.25 

RMSSD R 40.24 23.31 31.70 18.83 -3.703*** HF Log R 6.63 4.40 6.17 1.61 -3.251** 
W 34.52 18.36 31.55 18.33  W 6.11 3.25 5.91 1.58 

pNN50 R 18.22 18.04 11.01 19.38 -2.357** HF nu R 41.28 18.61 41.01 28.89 -0.648 
W 14.98 16.13 10.87 19.15 

 
 W 47.07 38.53 40.25 24.71 

Total 
Power 

R 1867.29 1592.45 1202.50 1629.00 -4.98*** Peak HF R 0.26 0.08 0.28 0.16 -1.271 
W 1159.50 982.46 813.00 1140.75 

 
 W 0.27 0.08 0.29 0.17 

Total 
Power (log) 

R 7.23 0.77 7.09 1.09 -5.142*** LF/HF R 2.29 2.39 1.44 1.85 -1.35 
W 6.74 0.81 6.70 1.29 

 
 W 1.69 1.06 1.51 1.50 

VLF  R 145.07 132.51 97.00 102.75 -4.665*** SD1 R 28.50 16.51 22.45 13.35 -3.721*** 
W 73.34 77.83 42.00 62.00  W 24.43 13.00 22.30 13.08 

VLF log R 4.62 0.88 4.57 0.99 -5.066*** SD2 R 52.66 19.74 47.50 30.08 -2.429* 
W 3.84 0.97 3.74 1.23  W 41.00 15.02 36.40 23.75 

Peak VLF R 0.03 0.01 0.04 0.01 -1.386 SD2/SD1 R 2.06 0.63 1.99 0.78 -5.774*** 
W 0.04 0.00 0.04 0.01  W 2.62 6.20 1.81 0.73 

Note: R = Rest; W = Workload; p-value *Significant at p<0.0; **<0.01; ***<0.001 

Results 

Table 3 shows the descriptive statistics of each HRV index, both during rest and while participants engaged in 
cognitive tests. Since this study focused on building machine learning models with binary labels (rest and workload), 
we averaged the data derived from the d2-Attention and Switcher Featuring tests. e instances were balanced 
between ‘rest’ or ‘no mental workload’ and ‘task’ or ‘mental workload’. When estimating the mental workload of a 
person, it is important to define the specific state of interest, referred to as the ground truth. In the context of this 
study, the ground truth is defined by the protocol implemented [33].  

To evaluate whether the d2-Attention and Switcher Featuring tests could elicit physiological stress reactions, we 
performed Wilcoxon tests for all HRV parameters. e results were reported as z-values. As also displayed in Table 
3, out of 24 features, 18 (75%) demonstrated significant differences between the two conditions (rest vs workload) 
(p<0.05). is finding indicates that the implemented protocol reflected changes in the majority of physiological 
signals. 

Selected Features from Knowledge Domain and mRMR Methods 

HRV features, selected using the knowledge domain, show trend median values consistent with expectations. For 
instance, when individuals were engaged in mental activities requiring cognitive processing, RMSDD, and HFnu 
tend to decrease, which indicated suppression in their vagal tone. Concurrently, LF tends to increase, implying a 
higher sympathetic activation [22]. In contrast, when employing the mRMR approach to train and test the model, 
using the top seven (a number equivalent to those selected from the knowledge domain), we obtained the following 
features: time domain (minimum heart rate), frequency-domain (VLF absolute power, VLF log, peak VLF, and ratio 
LF HF), and non-linear (SD2). 
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Table 4. Performance evaluation based on feature selection and validation techniques 

Classifiers Feature Selection Validation 
No (Full Features) Knowledge mRMR Hybrid LOOC 

SVM 65.97% 62.76% 60.61% 58.33% 67.89% 
NB 62.71% 49.74% 59.14% 52.38% 62.01% 
GB 54.04% 56.93% 55.83% 52.38% 58.82% 
AdaBoost 59.45% 55.52% 54.10% 51.19% 61.52% 

 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

Figure 5. Comparison Accuracy Scores across Single and Ensemble Learning Classifiers 

Performance of Models 

e accuracy scores for performance classification on the binary classes for all models are displayed in Table 4 and 
Figure 5. In general, the full features demonstrated superior performance when compared with fewer features 
obtained through either the knowledge domain or mRMR-based. However, the differences are relatively minimal 
and not consistent across different classifiers and validation techniques. With regard to the hybrid validation 
technique, the Gradient boost exhibits the weakest performance when employing the full set of features. In contrast, 
for the LOOC validation technique, the accuracy scores achieved using both the full feature set and a subset derived 
from the mRMR method are relatively similar (see Figure 5). In terms of validation techniques, all classifiers assessed 
by LOOC yielded higher accuracies compared to those validated using the hybrid method. 

e optimal model was achieved utilizing the SVM (Support Vector Machine) approach, specifically employing 
knowledge-domain-based features and the LOOCV technique, resulting in an accuracy of 68.38%. e SVM appears 
to be the best classifier compared to Naïve Bayes and Ensemble classifiers. Contrary to expectations, the performance 
of ensemble learning models proved inferior to that of individual classifiers. e lowest accuracy score was presented 
by AdaBoost, using mRMR-based features and a hybrid technique (46.43%). his observation remains consistent, 
whether the full set of features or subsets derived from the knowledge domain or mRMR methods were employed, 
and is irrespective of whether the validation was conducted through hybrid or LOOC. 
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Discussion 

A thorough evaluation was conducted on several ML algorithms, consisting of both single and ensemble learning 
classifiers while integrating selected features and some validation approaches. e findings suggest that the majority 
of HRV features were reflected differently during periods of mental workload compared to states of rest, including 
baseline and recovery phases. is observation is consistent with the results of prior studies [9], [20], [26]. In their 
review, Lohani, et al [20] suggest that cardiovascular measures (heart rate and HRV) may serve as robust indicators 
for the detection of near real-time cognitive changes in the real-world driving environment. Similarly, Mohanavelu 
et al [26] demonstrated that changes in HRV features such as SD2, SDNN, VLF, and total power are significant at all 
task load conditions during flight simulation involving 20 Indian fighter aircra pilots. LFnu and HFnu were also 
able to distinguish the effect of low visibility and secondary cognitive task. eir studies contribute to our 
understanding of pilots’ tasks and their cognitive demands during dynamic workload, as analyzed through HRV.  

e linear SVM classifier demonstrated superior performance, achieving the highest accuracy among the evaluated 
algorithms, using the knowledge domain and leave-one-subject-out cross-validation approaches. In contrast with 
other models, including ensemble learnings, this outcome emphasizes that a simpler classifier can perform well in 
mental workload prediction. is observation confirms previous findings in cognitive state estimation [11], [33], 
[34], which were conducted using datasets from European, American, and Canadian samples, respectively. 
Interestingly, our finding did not support the widely recognized superiority of ensemble learnings over single 
classifiers [32], [46], which offer robustness, scalability, and ease of handling non-linearities. It seems that our HRV 
data is linearly separable, indicating a clear margin of separation between the two classes. In this context, SVM proves 
to be highly efficient and accurate. Nevertheless, since SVM also scales poorly for larger datasets. If future studies 
involve more subjects or more physiological signals or cognitive states, using SVM may be computationally 
expensive. In such scenarios. Algorithms like Gradient Boosting and AdaBoost may present a more reasonable 
starting point since they performed better without feature selection and are also known to scale more effectively for 
larger datasets [33]. 

It needs careful consideration that the accuracies achieved by all classifiers in this study although acceptable, range 
between 42.8 and 68.38%, which is relatively lower than those reported in prior HRV-based machine learning studies 
(e.g., [31]–[34]). is might be explained that our study exclusively utilized HRV signals, while more reliable and 
rigorous methods usually employ a fusion of multimodal signals. Such signals might include physiological measures 
(such as EEG, EDA, respiration, skin temperature, eye movement, and pupil diameter), behavioral manifestations 
(keystrokes and mouse dynamics, and sitting posture), facial expression, speech, and mobile phone use patterns] 
[11], [33], [52]. is approach, however, presents complex practical challenges including real-time multimodal data 
acquisition, data fusion, and data integration. Moreover, it raises important concerns regarding user privacy such as 
the implications of recording a person’s computer keystrokes, video, and speech. Such methods may be impractical 
in actual business settings due to corporate computer security policies or global regulations workplace privacy laws 
[53]. Nevertheless, future studies need to explore the integration of multiple physiological measures to enhance the 
accuracy of cognitive load prediction. For instance, a combination of HRV and EDA or GSR has been shown to yield 
high accuracies without interfering with daily activities, as both signals can be recorded using a single device (e.g., 
Empatica E4) [11], [34]. Another plausible explanation contributing to the observed results is the study's focus on 
feature selection and validation issues, without an emphasis on hyperparameter tuning to optimize ML performance. 
Future studies should configure the hyperparameter values to produce the best model according to a predefined 
metric such as accuracy, while concurrently considering the balance between enhanced performance and 
computational costs. 

Regarding the feature selection method, the best accuracy ranging from 50.0 to 67.65% was achieved with 24 features 
provided by the Kubios soware. When comparing performance between HRV features selected by the knowledge 
domain and mRMR methods, relatively similar accuracies were observed. However, the knowledge domain offers 
advantages over mRMR in terms of its interpretability. e HRV features selected through the knowledge domain, 
including mean heart rate, SDNN, RMSSD, pNN50, HF, and LF, exhibited trends in the expected directions. ese 
indicate correct markers of higher cognitive processing when individuals are engaged in mental workload [24]. In 
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contrast, the mRMR method, which selected features like VLF absolute power, VLF log, peak VLF, ratio LF HF, and 
non-linear SD2, poses significant challenges in their interpretation. VLF is generally a representation of long-term 
regulation mechanisms, thermoregulation, and hormonal mechanisms [22], [25]; however, its peak is difficult to 
interpret. Moreover, the validity of VLF typically requires longer recording (exceeding 5 minutes [25], [41]. 
Furthermore, although non-linear SD2 provides information about the long-term variations in the NN interval 
fluctuations, as denoted by poincaré plot standard deviation along the line of identity, it does not represent any 
specific underlying physiological mechanism. Instead,  it simply reflects the general complexity of the heart rate 
signal [25].  

As predicted, a consistent trend of higher accuracy scores was observed with LOOCV across various models. Within 
LOOCV, 135 instances were used for training, and one is used for testing in each fold while in the hybrid technique, 
108 instances were used for training. Since the majority of the data is used for training, the model can potentially 
learn more information, thereby achieving higher accuracy. Conversely, the hybrid technique reduced a number of 
training instances might lead to a less well-trained model. An additional factor to consider is the bias-variance trade-
off. Since LOOCV is evaluated on only one instance at a time, the variance of the validation can be high, potentially 
leading to overly optimistic results. In contrast, the train-test split within the hybrid technique may provide a more 
balanced bias-variance trade-off, producing a more realistic estimation of the model's performance on previously 
unseen data. e difference in bias and variance might contribute to the lower accuracy scores compared to LOOCV. 
A further consideration is that LOOCV’s repetitive fitting of the model (136 times) might induce overfitting, thus 
yielding a higher accuracy. In contrast, the hybrid technique involves fewer fittings of the model and might be less 
prone to overfitting, and might risk underfitting the data, resulting in lower accuracy [50]. Considering the 
advantages and disadvantages of both techniques, we recommend the use of LOOCV in HRV-based ML models, 
particularly when the dataset is relatively small as it can take into account individual differences. e hybrid 
technique should be used in scenarios involving large datasets or a computationally expensive model [50].   

It is worth noting that this study does not specifically focus on differences in HRV across populations, rather, focusing 
on the ML models themselves. Exploring the extent to which demographic characteristics could influence HRV 
metrics would require an alternative methodology, such as a psychophysiological approach, which is beyond the 
scope of the current research. However, our unique dataset, representing HRV from a specific population (i.e., 
Indonesia), offers a perspective through which the effectiveness of ML models can be evaluated in various 
demographic settings. is highlights the potential benefits of tailoring ML algorithms to specific demographic 
groups, which is important yet oen overlooked in the existing literature. 

Limitations and Future Recommendations 

is study has several limitations. One important limitation is the small sample size and homogenous sample 
characteristics (university students). Although the sample size of the current dataset is comparable to research on 
cognitive load [see Table 2], these findings should be confirmed in a larger study with more participants. is would 
allow for the generalizability of the conclusions. Further, the mental workload experiment was conducted in a 
controlled laboratory setting. is was to ensure the production of clean artifact-free datasets, thereby facilitating a 
fair comparison of different HRV measures and concluding the optimal physiological indicators of mental workload. 
Nevertheless, further studies need to replicate the experiment with more heterogenous samples, ideally in a real-
work setting to enhance external validity.  

While this current performance is considered acceptable, improvement of performance should be prioritized. is 
includes the exploration of several feature extraction strategies, such as employing segments of data (i.e., time 
windows) with various overlapping windows to enlarge a number of instances. While this study follows the 
recommended minimum recording duration of five minutes, other studies demonstrate that shorter time windows 
may produce good models [54]. Moreover, to enhance the generalization of mental workload model trained on a 
large population, the implementation of personalized models might be considered. is could involve a combination 
of samples from a large group, added with few individual-specific samples. In this context, calibration samples could 
function as the individual's “fingerprint,” introducing unique attributes into the new model [53].  
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Implication 

e results of this study highlight the connection between individuals’ physiological characteristics, specifically HRV, 
and their experience of mental workload. is understanding may lead to the development of innovative strategies 
to adapt and support complex cognitive tasks, responding to real-time user engagement with various duties [2]. 
Monitoring mental workload in real-world environments could enhance human cognitive capabilities, particularly 
in decision-making scenarios where cognitive readiness is limited, and the likelihood of human error, due to factors 
like acute stress and other load factors, is elevated. is research represents a progressive step toward the future, 
exploring the utilization of physiological markers, derived from HRV, to distinguish between rest and mental 
workload.  

Given the relatively uniform performance across all experimental combinations, the data recommend the use of a 
linear SVM classifier with selected features from the knowledge domain and LOOCV as a validation technique. is 
approach addresses two critical aspects: the creation of interpretable models within AI and the personalization of 
data that is person-dependent. For larger datasets, ensemble learning methods would be preferable. 

Furthermore, this finding offers valuable insights into practical applications aimed at optimizing mental workload 
management. Such optimization can be achieved by the development of a wearable recognition system capable of 
accurately detecting increased mental workload in real-world situations and providing immediate feedback to the 
user. Finally, the dataset compiled during this study may foster interdisciplinary work, and encourage collaboration 
between researchers, practitioners, and other stakeholders in human factors and machine learning fields. 

In the modern times, there has been a notable shi towards occupational roles that demand more complex cognitive 
processing, leading to the need for higher levels of mental workloads. is trend has been parallel with the rapid 
development of wearable sensing devices and advancements in artificial intelligence. Such developments lead to the 
growing interest in utilizing HRV as a promising approach for remotely and continuously monitoring workload. A 
substantial challenge in this domain, however, lies in the availability of relevant data for mental workload recognition, 
especially within specific populations, such as in Indonesia. 

is current study aims to evaluate the performance of several HRV-based machine learning models: Support Vector 
Machine, Naïve Bayes, Gradient Boosting, and AdaBoost, employing a unique dataset gathered from experiments 
conducted within the Indonesian population. e research involves an analysis of each algorithm, applying HRV's 
full feature set and those selected from both knowledge domains and mRMR methods, and utilizing leave-one-out 
cross (LOOC) validation and hybrid validation techniques.  e results reveal that the SVM classifier, coupled with 
knowledge domain selection and LOOC validation, is the best model. is finding emphasizes the potential of even 
simple machine learning models to predict mental workload through more interpretable features and LOOCV which 
can accommodate individual characteristics in HRV.  e study provides insights into the development of a mental 
workload recognition system, potentially improving decision-making where cognitive readiness is constrained and 
the propensity of human error is elevated. 
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