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ABSTRACT

Additive manufacturing (AM) has revolutionized the manufacturing sector, particularly with the advent of 3D printing technology,
which allows for the creation of customized, cost-effective, and waste-free products. However, concerns about the strength and reliability
of 3D-printed products persist. This study focuses on the impact of three crucial variables—infill density, printing speed, and infill
pattern—on the strength of PLA+ 3D-printed products. Our goal is to optimize these parameters to enhance product strength without
compromising efficiency. We employed Charpy impact testing and Response Surface Methodology (RSM) to analyze the effects of these
variables in combination. Charpy impact testing provides a measure of material toughness, while RSM allows for the optimization of
multiple interacting factors. Our experimental design included varying the infill density from low to high values, adjusting printing
speeds from 70mm/s to 100mm/s, and using different infill patterns such as cubic and others. Our results show that increasing infill
density significantly boosts product strength but also requires more material and longer processing times. Notably, we found that when
the infill density exceeds 50%, the printing speed can be increased to 100mm/s without a notable reduction in strength, offering a
balance between durability and production efficiency. Additionally, specific infill patterns like cubic provided better strength outcomes
compared to others. These findings provide valuable insights for developing stronger and more efficient 3D-printed products using
PLA+ materials. By optimizing these parameters, manufacturers can produce high-strength items more efficiently, thereby advancing
the capabilities and applications of 3D printing technology in various industries.
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INTRODUCTION

Additive manufacturing, commonly known as 3D printing, has fundamentally transformed traditional
manufacturing processes [1]-[3]. This innovative technology enables the layer-by-layer creation of three-
dimensional objects based on digital models, diverging significantly from traditional subtractive methods [4], [5].
Its adaptability and versatility have driven its widespread adoption across various industries, including aerospace,
healthcare, and automotive sectors [6]-[8]. Beyond rapid prototyping, 3D printing now facilitates the direct
production of end-use components [9], reshaping supply chains with its on-demand manufacturing capability [10].
Continued technological advancements are enhancing the integration of digital design with additive manufacturing,
opening new avenues for customization, efficiency, and sustainability [11], [12]. This evolution positions 3D printing
at the forefront of modern manufacturing methodologies, driving innovation across industries.

Additive manufacturing stands out for its significant reduction in material waste compared to traditional methods
[13], [14]. Unlike subtractive processes that often lead to substantial wastage through cutting and shaping [15], AM
builds objects layer by layer, using only the necessary material. This approach not only minimizes waste but also
positions AM as a sustainable choice in manufacturing, aligning with increasing environmental concerns among
industries and consumers. Beyond sustainability, AM offers unprecedented design flexibility, enabling the

License: CC BY-NC-SA


https://doi.org/10.25077/josi.v23.n1.p76-91.2024
https://josi.ft.unand.ac.id/index.php/josi/index
https://creativecommons.org/licenses/by-nc-sa/4.0/

SURYADARMA ET AL. / JURNAL OPTIMASI SISTEM INDUSTRI, VOL. 23 NO. 1 (2024) 76-91

production of intricate and customized products that were previously impractical [16], [17]. This capability has
transformative implications across sectors: from personalized medical implants tailored to individual patient needs
to aerospace components optimized for performance and weight. Moreover, the ability to rapidly prototype and
iterate designs accelerates the product development cycle, empowering companies to innovate and bring new
solutions to market swiftly and efficiently.

Fused Deposition Modeling (FDM) is a widely used additive manufacturing technique in 3D printing known for its
efficiency and versatility [18], [19]. This method involves heating a thermoplastic filament, typically ABS or PLA, to
its melting point and extruding it through a nozzle onto a build platform in precise layers to form the desired object
[20], [21]. FDM offers several advantages, including cost-effectiveness, high precision, and the ability to create
complex geometries with ease [22]. However, challenges such as limited material choices and the need for post-
processing highlight the necessity for ongoing research and development to expand its capabilities across academic
and industrial applications.

Fused Deposition Modeling (FDM) in 3D printing relies on various critical parameters to achieve precise and
dependable fabrication [21]-[23]. These parameters encompass layer height, nozzle diameter, printing speed,
extruder temperature, bed temperature, infill pattern, infill density, and material type. Layer height directly influences
the thickness of each deposited layer, impacting the resolution and surface finish of the printed object [24].
Meanwhile, nozzle diameter affects extrusion precision, and printing speed determines both the duration of printing
and the quality of the final part. Defined as the rate at which the printer's extruder deposits material, printing speed
plays a pivotal role in optimizing printing efficiency and ensuring part strength. Finding the optimal printing speed
is crucial to achieve proper bonding between successive layers and to mitigate issues like extrusion inconsistencies
and warping [23], [25]. High printing speeds can compromise layer adhesion, leading to weakened interlayer bonds
and reduced structural integrity. Conversely, excessively slow speeds may prolong printing time and exacerbate
problems related to thermal degradation of filament materials. Therefore, striking a balance between printing speed
and part quality is essential for producing robust and mechanically sound printed objects. This approach ensures
efficient printing while maintaining the integrity and durability required for various applications in additive
manufacturing.

The choice of infill pattern significantly impacts both the internal structure and mechanical properties of printed
parts. Common infill patterns such as rectilinear, grid, triangular, honeycomb, cubic, gyroid, and concentric each
offer distinct advantages in terms of strength, weight efficiency, and material usage [23]. For example, honeycomb
patterns are known for their high strength-to-weight ratio, making them ideal for applications requiring robustness
with minimal material consumption. On the other hand, rectilinear patterns offer simplicity and ease of printing
while providing adequate support and structural reinforcement [26]. Infill density, which refers to the proportion of
interior space filled with infill material, deeply influences the mechanical strength and load-bearing capacity of
printed objects. Higher infill densities result in denser internal structures, thereby enhancing overall strength and
rigidity. However, increasing infill density also leads to greater material usage and longer printing times. Balancing
infill density with specific structural requirements is crucial for optimizing part performance while minimizing
material waste and production costs [27].

PLA+ (Polylactic Acid) has gained popularity in 3D printing due to its biodegradability and ease of use [28], [29].
Despite its widespread utilization, there is a notable lack of comprehensive research on the optimal printing
parameters needed to achieve the highest strength in PLA+ prints. Existing studies have examined various
mechanical properties of PLA+ such as tensile strength and hardness, but they often fail to identify the ideal printing
conditions, including temperature, layer thickness, and infill patterns, which are crucial for enhancing mechanical
performance. Addressing this research gap is essential for maximizing the mechanical properties of PLA+ and
unlocking its full potential in applications ranging from prototyping to functional end-use parts. A thorough
investigation into these printing parameters could lead to significant advancements in the performance and
durability of PLA+ 3D prints.

The use of PLA+ in 3D printing is expanding across various industries, including medical, automotive, and aerospace
sectors. In the medical field, PLA+ is utilized for creating biodegradable implants, surgical guides, and custom
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anatomical models for pre-surgical planning [30]-[32]. In the automotive industry, PLA+ is employed to produce
prototypes and small components, such as dashboard elements and custom fixtures, due to its ease of printing and
cost-effectiveness [33]-[36]. In the aerospace sector, PLA+ is used for creating lightweight, non-critical components
like jigs and fixtures for assembly processes, as well as for prototyping complex parts to streamline design and testing
phases [37], [38]. These examples demonstrate how PLA+ 3D printing is contributing to advancements and
efficiencies in a range of high-tech industries.

However, despite these advancements, there is a noticeable gap in the research concerning the interplay of infill
density, infill pattern, and printing speed in 3D printing. Many researchers do not adequately clarify how these
parameters interrelate, with most current studies isolating each parameter and seeking to optimize them individually.
This study seeks to address this gap by integrating these three vital parameters using response surface methodology
with a full factorial design, offering a novel and more robust solution. This approach allows for a comprehensive
examination of the interactions between parameters, enabling the identification of optimal combinations for
producing high-strength products. By simultaneously determining the best settings for these parameters, the study
aims to provide a deeper and more holistic understanding essential for advancing additive manufacturing
technologies.

Table 1 provides an overview of research on the mechanical properties of PLA+ material in the context of 3D printing.
While several studies have examined key parameters such as infill density, infill pattern, printing speed, nozzle size,
and extruder temperature, there is considerable variation in the testing procedures employed. For instance, only a
few articles have utilized the impact test procedure, while others predominantly focus on tensile testing.
Furthermore, existing studies often use small sample sizes, limiting the generalizability of their findings. To address
these limitations, this study will employ response surface methodology with a full factorial design, allowing for a
more comprehensive exploration of the relationship between printing parameters and mechanical properties. By
fabricating 320 specimens, this approach aims to provide robust experimental data to elucidate optimal parameter
settings while considering design requirements and cost-effectiveness.

Table 1. Overview of Studies on the Mechanical Characteristics of 3D-Printed Components Using PLA+ Material.

No. Author Research Mechanical test Sample size

1 Yadav etal. [39] infill density, lay bed position Tensile not diclared

2 Yilanetal. [40] Infill density, Infill pattern, printing speed, used Tensile @1 total 18
anova

3 Turaetal. [41] infill density, print speed, shell count Tensile not diclared

4  Bhandarkar etal. [42] Infill pattern, infill density, extruder Tensile, roughness @1
temperature, taguchi

5  Manij etal. [43] layer thickness, infill density, extruder Tensile, roughness @1
temperature, taguchi

6  Mishra et al. [44] carbon fiber PLA, Infill pattern, infill density, Tensile dan flexural 54 speciment
printing speed, used anova

7 Travieso-Rodriguez et ABS, PLA, PLA Wood, Tensile dan flexural 27 speciment

al. [45]

8  Khawly et al. [46] infill density Impact testing @1

9  Pandzicetal. [47] infill density, compare ultimaker 3d print model Tensile @1

10 Hasan et al. [48] storage 6 month and heat treatment at 57.5C Tensile 96 speciment

11 Triyono et al. [49] nozzle hole diameter 0.3; 0.4; 0.5; 0.6 Porosity and tensile ~ @1 total 4

12 Farayibi and Omiyale infill density, extruder temperature, Taguchi Tensile, Impact, @1

[50] hardness
13 The proposed research Infill density, printing speed infill pattern use ~ Impact 320 speciment

Response Surface Methodology
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Figure 1. The design of the specimens by SolidWorks software and then Ultimaker Cura software for slicing and
generating G-Code.

Utilizing response surface methodology not only enables the identification of optimal parameters by maximizing
impact values but also allows the observation of each parameter's sensitivity to its impact value. This facilitates finding
parameter settings that suit design requirements, eliminating the necessity of using only the parameters with the
highest impact values. Instead, it enables the determination of other parameters with impact values close to the best,
while maintaining an economical process and lightweight material. Moreover, understanding these interactions is
essential for achieving high-strength products through additive manufacturing. By simultaneously identifying the
best settings for infill parameters and printing speed, this research aims to provide comprehensive insights into
optimizing additive manufacturing processes. These insights will be crucial for enhanced product development,
ensuring that the produced parts are both robust and cost-effective.

METHODS

This article employs Response Surface Methodology (RSM) to determine the optimal parameters for the 3D printing
process [44]-[46]. The identified parameters will serve as independent variables, while the impact values will be
treated as dependent variables. The specific parameters selected, namely printing speed, infill density, and infill
pattern, are based on the literature review in the previous section due to their significant impact on the strength of
3D printed results [39]-[41]. The experimental procedure is illustrated in Figure 1.

The first step of the experiment involves making the specimens. The design of the specimens was accomplished using
SolidWorks software, with the files saved as .stl files. Following this, Ultimaker Cura software was used for slicing
and generating G-Code, which was then executed on a 3D printing machine employing Fused Deposition Modeling
(FDM) technology (see Figure 2). The fabrication of specimens and the subsequent Charpy Impact Tests adhere to
the ASTM D6110 standards. ASTM D6110 is a standard test method established by ASTM International for
determining the impact resistance of plastic specimens. Specifically, it describes the procedure for conducting the
Izod pendulum impact resistance test, which measures the energy absorbed by a material during fracture. This test
is crucial for evaluating the toughness and durability of plastic materials under sudden impacts.

A visual inspection is conducted to ensure that the specimens from the 3D printer are free from defects such as
shrinkage and deformation. Any non-conforming specimens will be discarded. For each set of parameters, five
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Figure 2. The design of the specimens by SolidWorks software and then Ultimaker Cura software for slicing and
generating G-Code.

Figure 3. The specimens are ready for Charpy impact testing

specimens will be produced (four for testing and one as a backup). Once completed, the specimens will be labeled,
measured, and prepared for Charpy impact testing, as shown in Figure 3. Charpy impact testing, a widely used
technique for assessing material toughness, involves striking a notched specimen with a pendulum to measure the
energy absorbed during fracture. This method is crucial for determining the suitability of materials for structural
components, providing insights into their performance under dynamic loading conditions, and ensuring enhanced
safety and reliability in real-world applications. In this study, Charpy impact testing is conducted on specimens
created with varying parameters: infill density (ranging from 10% to 100% in increments), printing speed (70mm/s,
80mm/s, 90mm/s, and 100mm/s), and infill pattern (cubic and grid), as illustrated in Figure 4. The infill density
increments were chosen based on the hypothesis that infill density significantly impacts the strength of the 3D
printed part. The default printing speed in CURA software is 80mm/s, and the study aims to examine the effects of

Infill density Printing speed Infill pattern

Figure 4. Production specimen using 3 parameter combination
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Table 2. Analog Charpy impact machine specification

Specification Unit

Hummer pendulum weight 6kg

Hummer pendulum arm length (L) 500 cm

Hummer pendulum initial angle (at) 135 degrees
Specimen type Metal, plastics, wood

increasing the speed up to 100mm/s. The choice of infill patterns is informed by a literature review and the default
settings in CURA, which uses cubic infill for densities below 30% and grid infill for densities above 30%. The machine
specifications are detailed in Table 2.

The testing mechanism is illustrated in Figure 5. In this figure, point A represents the axis of the impact machine,
and L denotes the length of the hammer pendulum arm. The initial angle of the hammer pendulum is marked as a,
while P indicates the angle position of the pendulum at its maximum deviation after the collision. Point B shows the
initial position of the hammer pendulum, point C represents the position where the hammer collides with the
specimen, and point D depicts the final position of the hammer pendulum at its maximum deviation after the impact.
According to James Prescott Joule's law of conservation of energy, in the system depicted in Figure 5, the mechanical
energy at points B, C, and D remains the same if external forces like air resistance are neglected, as shown in Equation
(1). Mechanical energy comprises both potential and kinetic energy, as indicated in Equation (2). At points B and D,
the pendulum is stationary, so only potential energy is present (kinetic energy = 0). However, at point C, where the
height h = 0, only kinetic energy is present (potential energy = 0), as illustrated in Equation (3).

EmB = EmC = EmD (1)
EpB+EkB = EpC+EkC =EpD+EkD (2)
EpB = EkC = EpD (3)
where

Emg; Em:; Emp = Mechanic energy at position B; C; D(Joule)

Epg; Epc; Epp = Potential energy at position B; C; D (Joule)

Ekg; Ek¢; Ekp = Kinetic energy at position B; C; D (Joule)

The condition described in Equation 3 changes due to the collision between the pendulum hammer and the specimen
at point C. Consequently, a portion of the energy is absorbed by the specimen, which is used to calculate the impact
strength of the material. The absorbed energy is the difference between the potential energy before the collision (Epg)
and the potential energy after the collision (Epp), as shown in Equation (4). The potential energy before the collision

A
o

Figure 5. Free body diagram of Charpy impact machine
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Figure 6. Free body diagram for absorbed energy calculation

(Epp) and after the collision (Epp) can be determined by knowing the heights h1 and h2, as illustrated in Figure 6

and Equation (5). Potential energy is calculated by multiplying the pendulum hammer mass, the gravitational

constant, and the height of the hammer. Heights h1 and h2 can be determined using trigonometric equations for

angles a and B, as shown in Equation (9).
Esps = Epgp — Epp

Esps = mghy —mgh,

Esps = mg(hy — hy)

Ej gs = mgAh

Esps = mg((L — hy) — (L — hy))

Ej s = mgL(cosf — cosa)

where

Esps = Absorbed energy (Joule)

4)

©)

(6)

™)

8)

©)

Epg = Potential energy at the position before the collision (Joule)

Epp = Potential energy at the maximum deviation position after the collision (Joule)

m = Pendulum hummer mass (kgs), the value is set 6 kgs

L = Pendulum hummer length (meter), the value is set 0.5m

a = Pendulum hummer starting position (degree), the value is set 1350)

B = Pendulum hummer at the maximum deviation position after the collision (degree)
G = Gravity constant (9.8 m/s?)

The impact value is calculated by dividing the absorbed energy by the cross-sectional area of the collision, as shown

in Equation (10). The measurement of the cross-sectional area is illustrated in Figure 7. The value is then multiplied

by 1000 to convert the units from J/mm? to kJ/m”.

[ = 1000 .E4ps
ch AW
where
I.n, = TImpactvalue (kJ/m?)
A = see Figure 7 (mm)
W = Width of specimen, see Figure 8 (mm)
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Figure 7. Dimensions of Charpy impact test specimen (ASTM D6110)

RESULT AND DISCUSSION

In this section, we present the results of sample testing, statistical calculations, and discussions to identify the
optimum parameters among the three tested: infill density (X1), printing speed (X2), and infill pattern (X3) (0 =

cubic, 1 = grid). For each parameter set, the impact values for the four samples are labelled A, B, C, and D, with the

average impact value represented as p (Y) and its variance as 0. This information is detailed in Table 3. Analysis of

Variance (ANOVA) is employed to compare the means across multiple groups, a method widely used in experimental
research. Table 4 displays the P-values for X1, X2, X3, X 1*X1 and X1*X3, which are all below the chosen significance
level of 0.05. The sufficiently large F-values further support this analysis.

Table 3. Result of sample testing

Sample No. X1 (%) X2 X3 Impact Value (kJ/m?)

(mm/s) (0,1) A B C D Y=p o
1 100 70 0 165.325 173.660 193.326 185.194 179.376 152.852
2 90 70 0 177.015 173.489 172.740 161.470 171.178 45.366
3 80 70 0 102.610  83.336 129.307 106.059 105.328 355.523
4 70 70 0 90.815 68.577 68.699 57.720 71.453 193.118
5 60 70 0 94.520 57.834 72.189 83.205 76.937 245.301
6 50 70 0 40.525 64.823 75.629 33.684 53.665 392.947
7 40 70 0 68.496 37.188 75.629 57.584 59.724 280.793
8 30 70 0 57.777 64.772 43.756 43.851 52.539 109.905
9 20 70 0 36.925 68.644 37.042 33.856 44.117 269.552
10 10 70 0 14.693 27.199 27.242 57.686 31.705 334.879
11 100 70 1 153.410 157.020 168.641 161.184 160.064 42.787
12 90 70 1 121.338  133.011 125.624 98.605 119.644 219.982
13 80 70 1 72.046 110.188 86.920 83.434 88.147 256.256
14 70 70 1 90.655 64.849 61.258 94.445 77.802 294.561
15 60 70 1 43.885 33.856 43.773 50.523 43.009 47.194
76 50 100 1 30.462 24.011 23.949 24.101 25.631 10.378
77 40 100 1 17.728 27.146 20.837 20.911 21.655 15.598
78 30 100 1 17.787 23.930 24.039 24.053 22.452 9.676
79 20 100 1 20.837 14.670 11.634 17.710 16.213 15.656
80 10 100 1 14.644 14.708 5.722 11.666 11.685 17.816
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Table 4. Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Model 8 166015 20752 202.33 0.000
Linear 3 140038 46679 455.13 0.000
X1 1 130584 130584 1273.21 0.000
X2 1 4971 4971 48.47 0.000
X3 1 4483 4483 43.71 0.000
Square 2 25037 12519 122.06 0.000
X1*X1 1 25022 25022 243.97 0.000
X2*X2 1 15 15 0.15 0.701
2-Way Interaction 3 940 313 3.05 0.034
X1*X2 1 31 31 0.30 0.583
X1*X3 1 741 741 7.23 0.009
X2*X3 1 167 167 1.63 0.206
Error 71 7282 103
Total 79 173297

From these results, we can derive several insights. Firstly, the P-values indicate that these variables and their
interactions have statistically significant effects on the dependent variable, suggesting that their effects are unlikely
due to random variation. Specifically, X1, X2, and X3 each have significant individual impacts on the outcome
variable. The significance of X1*X1 suggests a quadratic relationship, indicating that the effect of X1 on the
dependent variable follows a parabolic pattern, implying diminishing returns or an optimal level. The significance of
the interaction term X1*X3 suggests that the effect of X1 depends on the level of X3, indicating complex
interdependencies. These results imply that the model fits the data well, capturing important relationships, and that
the relationships between the predictors and the dependent variable are intricate, involving both linear and nonlinear
effects. This complexity should be considered in decision-making and further analysis to optimize outcomes based
on X1, X2, and X3. The significant effects of X1, X2, X3, X1*X1, and X1*X3 on Y are illustrated in Figure 8.

The regression model in Response Surface Methodology (RSM) is crucial for exploring and optimizing the
relationships between multiple independent variables and one or more dependent variables [51]. Its primary goal is

Pareto Chart of the Standardized Effects
(response is Y, a = 0.05)

Term
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Figure 8. Pareto Chart of the Standardized Effects
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Table 5. Goodness of statistics in Regression Model
S R-sq(R?) R?*(adj) R? (pred)
10.1273 95.80% 95.32% 94.71%

to identify the optimal levels of the independent variables that either maximize or minimize the response, thus
facilitating process optimization. The regression equations for the model are presented in Equation (11) for X3 =0
and Equation (12) for X3 = 1.

Y =135.6 — 0.999X1 — 1.47X2 + 0.02434X1? + 0.0044X2% — 0.00195X1X2 (11)

Y =110.3 — 1.211X1 — 1.21X2 + 0.02434X1? + 0.0044X2% — 0.00195X1X2 (12)

R-square (R?) plays a critical role in assessing the quality of a regression model. Table 5 presents the R? value, which
quantifies the proportion of variance in the dependent variable explained by the independent variables in the model.
The R* value of 95.80% suggests an excellent fit, indicating that the model accounts for a substantial portion of the
variability in the response variable.

While the R? provides an overall measure of goodness of fit, it is essential to consider Adjusted R* and Predicted R
for a more nuanced evaluation. Adjusted R? adjusts for the number of predictors in the model, offering a more
accurate metric when comparing models with different numbers of independent variables. This adjustment prevents
overestimation of the goodness of fit by penalizing the inclusion of extraneous predictors. Predicted R?, on the other
hand, assesses the model's predictive capability, specifically its performance in predicting new observations. This
measure accounts for both the number of predictors and the accuracy of the model in predicting new data points. A
higher Predicted R? value signifies superior predictive performance, indicating that the model is more reliable when
applied to unseen data [52], [53]. It is particularly useful in assessing the model's ability to make accurate predictions
outside the range of the training data. In this case, a Predicted R* value of 94.71% indicates a good fit for predicting
new data.

The analysis of the relationship between each independent variable (X1, X2, and X3) and the dependent variable
(Y), as depicted in Figure 9, reveals nuanced dynamics. The data indicates a strong positive correlation between X1
and Y: as the value of X1 increases, the value of Y correspondingly rises, suggesting that improvements in X1 directly
contribute to enhancements in Y. Conversely, X2 shows a significant negative correlation with Y. An increase in X2
leads to a decrease in Y, indicating that higher values of X2 may hinder or reduce the value of Y. For X3, the pattern
of influence is more complex. The cubic infill pattern associated with X3 exerts a stronger effect on Y compared to
the grid infill pattern. This suggests that the structure or method represented by the cubic infill is more effective or

Main Effects Plot for Y
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Figure 9. Individual relation of independent variable vs dependent variable
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Figure 10. Interaction relation of independent variable vs dependent variable

has a greater impact on Y than the grid infill. These insights point to targeted areas for further investigation and
optimization. Specifically, it is important to focus on the mechanisms through which X1 enhances Y, the factors
driving the inverse relationship between X2 and Y, and the specific attributes of the cubic infill pattern that make it
more influential on Y.

Unlike individual relationships, Figure 10 illustrates the interaction plot for the values of Y with combinations of X.
Part A of Figure 10 shows a positive interaction between X1 and X2 on Y. The blue line, red dashed line, and green
dashed line have similar shapes, but to achieve better strength with the same X1 value, it is advisable to use a smaller
X2 value (X2 = 70; blue line). In part B of Figure 10, the interaction between X1 and X3 on Y is depicted. The blue
line represents the scenario when X3 is cubic, while the red dashed line represents the scenario when X3 is grid. This
indicates that using a cubic infill pattern (X3 = 0) with the same X1 value generally produces better Y values. Part C
of Figure 10 illustrates the relationship between X2 and X3 on Y, showing that using the same X2 value will yield a
better Y value if X3 is cubic (X3 = 0). These interaction plots reveal that the combination of a lower X2 value and a
cubic infill pattern generally enhances the strength (Y), highlighting the importance of considering these
interactions in optimizing 3D printing parameters.

Figure 11 (left side) shows the relationship between X1, X2, and Y with X3 = 0. The dark blue area represents low Y
values, while the dark green area indicates high Y values. When X1 exceeds 50%, the influence of X2 becomes
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insignificant. Thus, for high-speed printing, an infill density greater than 50% is advisable. However, if the infill
density is less than 50%, the recommended printing speed is under 80mm/s. Figure 11 (right side) depicts the
relationship between X1, X2, and Y with X3 = 1. Again, the dark blue area indicates low Y values, and the dark green
area indicates high Y values. Here, Y values tend to stabilize for various X2 values when X1 is greater than 60%.
However, if X1 is less than 60%, the recommended X2 value is under 80mm/s. It is clear from Figure 11 that the Y
value cannot reach its maximum if the printing speed exceeds 90mm/s, even with a 100% infill density.

While Figure 11 provides a 2D contour plot, Figure 12 offers a 3D surface plot. Figure 12 (left side) is a surface plot
for X3 =0, and Figure 12 (right side) is a surface plot for X3 = 1. These surface plots help identify the global maximum
value for Y. Table 6 and Figure 13 demonstrate that the optimal values for X1, X2, and X3 result in the highest Y
value. This result reveals that the best combination of parameters for attaining the highest impact strength (Y)
involves setting the infill density (X1) to 100%, using a printing speed (X2) of 70mm/s, and employing a cubic infill
pattern (X3). This specific combination yields an optimal Y value of 183.938 kJ/m?. The reliability of these findings
is underscored by the 95% confidence interval for the maximum Y value, which ranges from 174.19 to 193.69 kJ/m?,
and the 95% prediction interval, which spans from 161.51 to 206.36 kJ/m>.

Table 6. Maximum solution of Y

X1 X2 X3 Y fit SE fit 95% CI 95% PI
100 70 0 183.938  4.89 (174.19, 193.69) (161.51, 206.36)
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Further insights into the influence of individual parameters show that increasing the infill density to 100%
significantly enhances the strength of the printed object. The study also highlights that a moderate printing speed of
70mm/s is optimal, as higher speeds may compromise the material's strength. Additionally, the cubic infill pattern
proves to be more effective than the grid pattern in achieving superior strength. The 3D surface plots used in the
analysis illustrate the interactions between these parameters, consistently showing that a high infill density combined
with a cubic pattern yields the best results.

CONCLUSION

To conclude, our study integrates these three critical parameters to determine their optimal values for 3D printing.
Our primary recommendations for achieving optimal strength include setting the infill density to 100%, using a
printing speed of 70mm/s, and employing the cubic infill pattern. However, further analysis reveals nuances that
can guide practical implementation. For instance, we found that an infill density exceeding 50%, combined with the
cubic infill pattern, allows users to increase the printing speed to 100mm/s without a significant reduction in
strength. Conversely, for lightweight printing, we recommend using infill densities below 50%, paired with the cubic
infill pattern and printing speeds under 80mm/s. It is important to note that our study is just a stepping stone in
understanding the complex interplay of printing parameters. Future research could explore additional factors, such
as enclosure printing techniques or post-printing annealing processes, to further enhance product strength and
expand the applicability of 3D printing in various industries. By providing these insights, we contribute not only to
the technical understanding within the research domain but also offer practical guidelines for practitioners seeking
to optimize their 3D printing processes for diverse applications.
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