Enhancement Material Removal Rate Optimization of Sinker EDM Process Parameters Using a Rectangular Graphite Electrode

Main Article Content

Sumanto
Acim Maulana
Dodi Mulyadi
Khoirudin
Siswanto
Sukarman
Ade Suhara
Safril

Keywords

Material removal rate, Sinker-EDM, S/N ratio, Taguchi Method

Abstract

This article discusses the optimization of sinker electrical discharge machining (sinker EDM) processes using SPHC material that has been hardened. The sinker EDM method is widely employed, for example, in the production of moulds, dies, and automotive and aeronautical components. There is neither contact nor a cutting force between the electrode and the   work material in sinker EDM. The disadvantage of the sinker EDM is its low material removal rate. This work aims to optimize the material removal rate (MRR) using graphene electrodes in a rectangular configuration. The SPHC material was selected to determine the optimum MRR model of the sinker EDM input parameter. The Taguchi experimental design was chosen. The Taguchi technique used three input parameters and three experimental levels. Pulse current (I), spark on time (Ton), and gap voltage were among the input parameters (Vg). The graphite rectangle was chosen as an electrode material. The input parameter effect was evaluated by S/N ratio analysis. The result showed that pulse current has the most significant impact on material removal rate in the initial study, followed by spark on time and gap voltage. All input parameters are directly proportional to the MRR. For optimal material removal rate, the third level of pulse current, spark on time, and gap voltage must be maintained. In addition, the proposed Taguchi optimization model could be applied to an existing workshop floor as a simple and practical electronic tool for predicting wear and future research.

Downloads

Download data is not yet available.

References

[1] E. C. Jameson, Electrical Discharge Machining. Dearborn: Society of Manufacturing Engineers, 2001.
[2] N. K. Singh and Y. Singh, “Experimental Investigation and Modeling of Surface Finish in Argon-Assisted Electrical Discharge Machining Using Dimensional Analysis,” Arab. J. Sci. Eng., vol. 44, no. 6, pp. 5839–5850, 2019. https://doi.org/10.1007/s13369-019-03738-5.
[3] G. Kibria and B. Bhattacharyya, “Micro electrical discharge machining of Ti-6Al-4V: Implementation of innovative machining strategies,” in Microfabrication and Precision Engineering: Research and Development, Elsevier Ltd, 2017, pp. 99–142. https://doi.org/10.1016/B978-0-85709-485-8.00004-8.
[4] J. Vora et al., “Machining parameter optimization and experimental investigations of nano-graphene mixed electrical discharge machining of nitinol shape memory alloy,” J. Mater. Res. Technol., vol. 19, pp. 653–668, 2022. https://doi.org/10.1016/j.jmrt.2022.05.076.
[5] R. Sheshadri et al., “Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: taguchi and super ranking concept approaches,” J. Mater. Res. Technol., vol. 14, pp. 2586–2600, 2021. https://doi.org/10.1016/j.jmrt.2021.07.144.
[6] H. El-Hofy, Fundamentals of machining processes: conventional and non-conventional processes. Boca: CRC Press, 2019. https://doi.org/10.1201/9780429443329.
[7] C. C. Wang and B. H. Yan, “Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining,” in Journal of Materials Processing Technology, 2000, vol. 102, no. 1, pp. 90–102. https://doi.org/10.1016/S0924-0136(99)00423-9.
[8] B. Bhattacharyya and B. Doloi, “Machining processes utilizing thermal energy,” in Modern Machining Technology, 2020, pp. 161–363. https://doi.org/10.1016/B978-0-12-812894-7.00004-9.
[9] N. M. Elsiti, M. Y. Noordin, and A. U. Alkali, “Fabrication of high aspect ratio micro electrode by using EDM,” IOP Conf. Ser. Mater. Sci. Eng., vol. 114, no. 1, 2016. https://doi.org/10.1088/1757-899X/114/1/012046.
[10] R. Swiercz, D. Oniszczuk-Swiercz, L. Dabrowski, and J. Zawora, “Optimization of machining parameters of electrical discharge machining tool steel 1.2713,” AIP Conf. Proc., vol. 2017, no. October, 2018. https://doi.org/10.1063/1.5056295
[11] M. A. Habib, “Microelectrochemical Deposition,” in Comprehensive Materials Processing, vol. 11, Elsevier, 2014, pp. 523–545. https://doi.org/10.1016/B978-0-08-096532-1.01109-2.
[12] G. R. Ribeiro, I. M. F. Bragança, P. A. R. Rosa, and P. A. F. Martins, “A laboratory machine for micro electrochemical machining,” in Machining and machine-tools, Woodhead Publishing Limited, 2013, pp. 195–210. https://doi.org/10.1533/9780857092199.195.
[13] P. Sahoo and T. K. Barman, “ANN modelling of fractal dimension in machining,” in Mechatronics and Manufacturing Engineering, 2012, pp. 159–226. https://doi.org/10.1533/9780857095893.159.
[14] E. Aliakbari and H. Baseri, “Optimization of machining parameters in rotary EDM process by using the Taguchi method,” Int. J. Adv. Manuf. Technol., vol. 62, no. 9–12, pp. 1041–1053, 2012. https://doi.org/10.1007/s00170-011-3862-9.
[15] T. Sultan, A. Kumar, and R. D. Gupta, “Material Removal Rate, Electrode Wear Rate, and Surface Roughness Evaluation in Die Sinking EDM with Hollow Tool through Response Surface Methodology,” Int. J. Manuf. Eng., vol. 2014, pp. 1–16, 2014. https://doi.org/10.1155/2014/259129.
[16] S. Chandramouli and K. Eswaraiah, “Optimization of EDM Process parameters in Machining of 17-4 PH Steel using Taguchi Method,” Mater. Today Proc., vol. 4, no. 2, pp. 2040–2047, 2017. https://doi.org/10.1016/j.matpr.2017.02.049.
[17] N. V. Kousik, N. Yuvaraj, R. Arshath Raja, P. Palanivel, and N. V. Kousik, “EDM Process by Using Copper Electrode with INCONEL 625 Material,” IOP Conf. Ser. Mater. Sci. Eng., vol. 811, no. 1, 2020. https://doi.org/10.1088/1757-899X/811/1/012011.
[18] S. S. Mahapatra and A. Patnaik, “Parametric optimization of Wire Electrical Discharge Machining (WEDM) process using taguchi method,” J. Brazilian Soc. Mech. Sci. Eng., vol. 28, no. 4, pp. 422–429, 2006. https://doi.org/10.1590/S1678-58782006000400006.
[19] Japanese Industrial Standard, JIS G 3131 Hot-rolled mild steel plates, sheet and strip Title. 2010.
[20] A. Abdurahman, S. Sukarman, A. Djafar Shieddieque, S. Safril, D. Setiawan, and N. Rahdiana, “Evaluasi Kekuatan Uji Tarik Pada Proses Pengelasan Busur Listrik Beda Material SPHC DAN S30-C,” vol. 1, no. 2, pp. 29–37, 2021.
[21] A. Moghanizadeh, “Reducing side overcut in EDM process by changing electrical field between tool and work piece,” Int. J. Adv. Manuf. Technol., vol. 90, no. 1–4, pp. 1035–1042, 2017. https://doi.org/10.1007/s00170-016-9427-1.
[22] D. B. Rathod and R. A. Jain, “Experimental Investigation of High-Speed Turning of INCONEL 718 Using PVD-Coated Carbide Tool Under Wet Condition,” vol. 757, pp. 367–374, 2019. https://doi.org/10.1007/978-981-13-1966-2_32.
[23] S. Sukarman, A. Abdulah, D. A. Rajab, and C. Anwar, “Optimization of Tensile-Shear Strength in the Dissimilar Joint of Zn-Coated Steel and Low Carbon Steel,” Automot. Exp., vol. 3, no. 3, pp. 115–125, 2020. https://doi.org/10.31603/ae.v3i3.4053.
[24] S. Sukarman, A. Abdulah, A. D. Shieddieque, N. Rahdiana, and K. Khoirudin, “Optimization Of The Resistance Spot Welding Process Of Secc-Af And Sgcc Galvanized Steel Sheet Using The Taguchi Method,” SINERGI, vol. 25, no. 3, pp. 319–328, 2021. https://doi.org/10.22441/sinergi.2021.3.9.
[25] S. Sukarman, A. D. Shieddieque, C. Anwar, N. Rahdiana, and A. I. Ramadhan, “Optimization of Powder Coating Process Parameters in Mild Steel (Spcc-Sd) To Improve Dry Film Thickness,” J. Appl. Eng. Sci., vol. 19, no. 2, pp. 1–9, 2021. https://doi.org/10.5937/jaes0-26093.
[26] U. Ashok Kumar and P. Laxminarayana, “Optimization of Electrode Tool Wear in micro holes machining by Die Sinker EDM using Taguchi Approach,” Mater. Today Proc., vol. 5, no. 1, pp. 1824–1831, 2018. https://doi.org/10.1016/j.matpr.2017.11.281.
[27] K. Khoirudin, S. Sukarman, N. Rahdiana, and A. Fauzi, “Analisis Fenomena Spring-Back / Spring-Go Factor Pada Lembaran Baja Karbon Rendah Menggunakan,” vol. 14, no. 1, 2022. https://doi.org/10.21107/rekayasa.v14i1.9570.
[28] R. LeSar and R. LeSar, “Materials selection and design,” Introd. to Comput. Mater. Sci., pp. 269–278, 2013.
[29] D. P. Andriani, “Metode Taguchi,” p. 43, 2014. https://doi.org/10.1016/j.respol.2014.04.009.
[30] N. K. Singh and Y. Vijayakumar, “Application of Taguchi method for optimization of resistance spot welding of austenitic stainless steel AISI 301L,” Innov. Syst. Des. Eng., vol. 3, no. 10, pp. 49–61, 2012.
[31] K. Vignesh, A. E. Perumal, and P. Velmurugan, “Optimization of resistance spot welding process parameters and microstructural examination for dissimilar welding of AISI 316L austenitic stainless steel and 2205 duplex stainless steel,” pp. 455–465, 2017. https://doi.org/10.1007/s00170-017-0089-4.
[32] S. F. Arnold, Design of Experiments with MINITAB, vol. 60, no. 2. 2006. https://doi.org/10.1198/tas.2006.s46.
[33] C. Jithendra and S. Elavenil, “Influences of Parameters on Slump Flow and Compressive Strength Properties of Aluminosilicate Based Flowable Geopolymer Concrete Using Taguchi Method,” Silicon, vol. 12, no. 3, pp. 595–602, 2020. https://doi.org/10.1007/s12633-019-00166-w.
[34] Q. M. Yu, X. J. Yang, and H. L. Zhou, “An experimental study on the relationship between torque and preload of threaded connections,” Adv. Mech. Eng., vol. 10, no. 8, pp. 1–10, 2018. https://doi.org/10.1177/1687814018797033.
[35] S. Gopalakannan and T. Senthilvelan, “Optimization of machining parameters for EDM operations based on central composite design and desirability approach,” J. Mech. Sci. Technol., vol. 28, no. 3, pp. 1045–1053, 2014. https://doi.org/10.1007/s12206-013-1180-x.
[36] P. Balasubramanian and T. Senthilvelan, “Optimization of Machining Parameters in EDM Process Using Cast and Sintered Copper Electrodes,” Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 1292–1302, 2014. https://doi.org/10.1016/j.mspro.2014.07.108.
[37] A. Abdelkefi, M. R. Hajj, and A. H. Nayfeh, “Power harvesting from transverse galloping of square cylinder,” Nonlinear Dyn., vol. 70, no. 2, pp. 1355–1363, 2012. https://doi.org/10.1007/s11071-012-0538-4.
[38] N. Irawati, N. T. Putri, and A. H. B. Adi, “Strategi Perencanaan Jumlah Material Tambahan dalam Memproduksi Semen dengan Biaya Produksi ( Studi Kasus Pt Semen Padang ),” J. Optimasi Sist. Ind., vol. 14, no. 1, pp. 176–191, 2015. https://doi.org/10.25077/josi.v14.n1.p176-191.2015.
[39] H. Sánchez-Beltrán, C. D. M. Rodríguez, J. C. B. Triviño, P. L. Iglesias-Rey, J. S. Valderrama, and F. J. Martínez-Solano, “Characterization of Modular Deposits for Urban Drainage Networks Using CFD Techniques,” Procedia Eng., vol. 186, pp. 84–92, 2017. https://doi.org/10.1016/j.proeng.2017.03.212.
[40] S. B. Sutono, “Grey-based Taguchi Method to Optimize the Multi-response Design of Product Form Design,” J. Optimasi Sist. Ind., vol. 20, no. 2, pp. 136–146, 2021. ttps://doi.org/10.25077/josi.v20.n2.p136-146.2021.
[41] A. G. Thakur and V. M. Nandedkar, “Optimization of the Resistance Spot Welding Process of Galvanized Steel Sheet Using the Taguchi Method,” pp. 1171–1176, 2014. https://doi.org/10.1007/s13369-013-0634-x.
[42] Mintab, “Select the options for Analyze Taguchi Design (Static).” [Online]. Available: https://support.minitab.com/en-us/minitab/19/help-and-how-to/statistical-modeling/doe/how-to/taguchi/analyze-taguchi-design/perform-the-analysis/select-the-options-static-design/?SID=63406. [Accessed: 10-Aug-2020].
[43] M. Özdemir, H. Dilipak, and B. Bostan, “Numerically modeling spring back and spring go amounts and bending deformations of Cr-Mo alloyed sheet material,” Mater. Test., vol. 62, no. 12, pp. 1265–1272, 2020. https://doi.org/10.3139/120.111613.