Penyusunan Kriteria Rumah Tinggal Berkonsep Ergo-Ekologi dalam Upaya Peningkatan Kenyamanan Termal Penghuni

Lusi Susanti    (Fakultas Teknik UNAND - Indonesia)
Sri Zetli (Jurusan Teknik Industri, Universitas Andalas, Padang - Indonesia)

 ) Corresponding Author
Copyright (c) 2017 Lusi Susanti, Sri Zetli

Nowadays, developers of residential houses often neglect to pay attention about the air circulation as one of the factors that affects thermal comfort zones inside the room environment. In general, people overcome the thermal discomfort using mechanical ventilation such as a fan or Air Conditioning (AC).This study measured the comfort zone of 32 row houses in the Batam city with two types of floor area (LT ≤ 36 m2 and LT > 36 m2). Other variables include Ceiling Height (Tpi), Aperture Area (Vi), Wall Materials (Bhi) and Orientation (Ori) were also considered in this measurement. The results show that thermal comfort zone was influenced by the wall material (Bh1) made from brick, aperture area (V2) > 20% of the floor area, and ceiling height (Tp2) > 3 m. While the house orientation variable can still be received by utilizing the architecture techniques to reduce direct solar radiation. This study also formulated three models of row house design with ergo-ecological concept,  which are  Ree = f {Lti, Bh, V, Tp2, Ori} atau Ree = f {Lt2, Bh, V, Tp1, Or2} atau Ree = f {Lt1, Bh, V, Tp1, Or1}.


Kenyamanan termal; Predicted Mean Vote (PMV); Predicted Percentage of Dissatisfied (PPD); Rumah Berkonsep Ergo-Ekologi
  Click to Read the Full Text

[1] Ronim, Azizah (2014). Kajian Kenyaman Termal Pada Rumah Tinggal Dengan Model Innercourt. Jurnal Arsitektur NALARs Volume 13 No 2: 73-88 Juli 2014.

[2] Sukarno, H. Matsumoto, L. Susanti, and R. Kimura (2015). Urban Energy Consumption in a City of Indonesia. General Overview. Vol. 5 No. 1: 360–373.

[3] Sindikia, Annise (2015). Analisis Pengaruh Struktur Fisik Rumah Tinggal Dan Pemakaian Peralatan Listrik Terhadap Konsumsi Energi Listrik Sektor Rumah Tangga di Indonesia. Skripsi Universitas Andalas, Padang.

[4] Balai Besar Teknologi Energi BPPT (2012). Perencanaan Efisiensi dan Elestisitas Energi 2012. Jakarta: BPPT.

[5] Garcia, Acosta (2014). Ergoecology: Fundamentals of a New Multidisciplinary field. Taylor and Francis. Theoretical Issues in Ergonomics Science, 2014.

[6] Garcia, Acosta (2012). Ergoecology: Evolution and Challenges. IOS Press. DOI: 10.3233/WOR-2012-1017-2133.

[7] Udrea, Ioana. et al (2016). Thermal Comfort in a Romanian Passive House: Preliminary Results. Science Direct. Energy Procedia 85 (2016) 575-583.

[7] Udrea, Ioana. et al (2016). Thermal Comfort in a Romanian Passive House: Preliminary Results. Science Direct. Energy Procedia 85 (2016) 575-583.

[8] ASHRAE. Handbook of Fundamental Chapter 8. Physiological Principles, Comfort, and Health ASHRAE. USA. 1989.

[9] L. Susanti. et al. 2007. A Laboratory Experiment On Natural Ventilation Through A Roof Cavity For Reduction Of Solar Heat Gain. Science Direct. Energy and Buildings xxx (2008) xxx-xxx.

[10] M.N.F. Alfata. et al (2015). Field Investigation Of Indoor Thermal Environments In Apartments Of Surabaya, Indonesia: Potential Passive Cooling Strategies For Middle-Class Apartments. Energy Procedia 78 (2015) 2947-2952.

[11] Widjayanti (2007). Profil Konsumsi Energi Listrik pada Hunian Rumah Tinggal Studi Kasus Rumah Desain Minimalis Ditinjau dari Aspek Pencahayaan Minimalis. Jurnal Ilmiah Perancangan Kota dan Permukiman.

[12] H. Frick (2008). Ilmu Fisika Bangunan, Seri Kontruksi Arsitektur 8. Yogyakarta: Penerbit Kanisius.

StatisticsArticle Metrics

This article has been read : 423 times
PDF file viewed/downloaded : 194 times

This article can be traced from

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.