Optimizing Demand Forecasting Method with Support Vector Regression for Improved Inventory Planning

Main Article Content

Tryantomo Lokhilmahful Palgunadi
Rina Fitriana
Anik Nur Habyba
Yun-Chia Liang

Keywords

Support Vector Regression, Forecasting, Grid Search Algorithm, Kernel Functions, Business Intelligence

Abstract

Problems arising from suboptimal production planning can cause inventory management to be less effective and efficient in the company. The lack of integrated presentation of information also causes less efficiency in making decisions. This study aims to obtain the best kernel function forecasting model by predicting ground rod sales using the Support Vector Regression (SVR) method in order to determine the level of forecasting accuracy and the results of ground rod forecasting in the future which are presented in an optimal data visualization. This problem-solving is done with the Support Vector Regression method, which consists of linear kernel functions, polynomial kernel functions, and radial basis function (RBF) kernel functions with the Grid Search Algorithm. Based on the results of the best parameter search that has been done using the grid search algorithm, it can be concluded that the best kernel function forecasting model is a linear kernel function with a value of C = 100 and ε = 10-3. The accuracy of this forecasting model has a MAPE value of training data and testing data of 2.048% and 1.569%, where this value is the smallest MAPE value compared to the MAPE value of the other two functions. After getting the best model, forecasting was carried out within five months, obtaining an average of 6,647 monthly pieces. The results of forecasting and historical sales are reviewed in a visualization of Business Intelligence data so that it is well exposed, where the forecasting shows an increase from every month.

References

[1]S. Fattaheian-Dehkordi, A. Fereidunian, H. Gholami-Dehkordi, and H. Lesani, “Hour-ahead demand forecasting in smart grid using support vector regression (SVR),” International Transactions on Electrical Energy Systems, vol. 24, no. 12, pp. 1650–1663, Sep. 2013. doi: 10.1002/etep.1743.
[2]E. Fradinata, Z. M. Kesuma, S. Rusdiana, and N. Zaman, “Forecast analysis of instant noodle demand using support vector regression (SVR),” IOP Conference Series: Materials Science and Engineering, vol. 506, p. 012021, Apr. 2019. doi: 10.1088/1757-899X/506/1/012021.
[3]R. A. Ramadhani, R. Fitriana, A. N. Habyba, and Y. C. Liang, “Enhancing quality control of packaging product: A Six Sigma and data mining approach,” J. Optimasi Sist. Ind., vol. 22, no. 2, pp. 197–214, 2023. doi: 10.25077/josi.v22.n2.p197-214.2023.
[4]M. Y. Latansa, T. J. Wahyu Adi, and M. A. Rohman, “Analysis the effect of total quality management, technology, and knowledge management on product quality in Indonesia construction industry,” IPTEK Journal of Proceedings Series, vol. 0, no. 5, p. 527, 2019. doi: 10.12962/j23546026.y2019i5.8246.
[5]C. Shoko and C. Sigauke, “Short-term forecasting of COVID-19 using support vector regression: An application using Zimbabwean data,” Am. J. Infect. Control, vol. 51, no. 10, pp. 1095–1107, 2023. doi: 10.1016/j.ajic.2023.05.009.
[6]A. D. De Menezes, J. G. M. De Barros, B. B. Da Fonseca, M. V. C. Aguilera, and N. A. de S. Sampaio, “Demand forecasting and inventory management as requirements for quality assurance in a bakery company,” Rev. Gestão e Secr. (Management Adm. Prof. Rev.), vol. 14, no. 9, pp. 15680–15694, 2023. doi: 10.18577/gestao.v14n9.2023.1247.
[7]O. Duru and M. Butler, “Modeling and forecasting with fuzzy time series and artificial neural networks,” Adv. Bus. Manag. Forecast., vol. 12, pp. 155–180, 2017. doi: 10.1108/S1477-407020170000012006.
[8]S. K. Selvam, C. Rajendran, and G. Sankaralingam, “A linear programming-based bi-objective optimization for forecasting short univariate time series,” Decis. Anal. J., vol. 10, p. 100400, 2024. doi: 10.1016/j.dajour.2023.100400.
[9]S. V. M. Evangelista and R. G. Regis, “Exploring the suitability of support vector regression and radial basis function approximation to forecast sales of Fortune 500 companies,” Adv. Bus. Manag. Forecast., vol. 13, pp. 3–23, 2019. doi: 10.1108/S1477-407020190000013006.
[10]D. Indra Purnama and S. Setianingsih, “Model support vector regression (SVR) untuk peramalan jumlah penumpang penerbangan domestik di Bandara Sultan Hasanudin Makassar,” J. Mat. Stat. dan Komputasi, vol. 16, no. 3, pp. 391–403, 2020. doi: 10.20956/jmsk.v.
[11]S. Maldonado, A. González, and S. Crone, “Automatic time series analysis for electric load forecasting via support vector regression,” Appl. Soft Comput. J., vol. 83, p. 105616, 2019. doi: 10.1016/j.asoc.2019.105616.
[12]D. Parbat and M. Chakraborty, “A python-based support vector regression model for prediction of COVID-19 cases in India,” Chaos, Solitons and Fractals, vol. 138, p. 109942, 2020. doi: 10.1016/j.chaos.2020.109942.
[13]H. Niu, “A method to increase the analysis accuracy of stock market valuation: A case study of the Nasdaq Index,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 1, pp. 732–743, 2024. doi: 10.14569/IJACSA.2024.0150173.
[14]T. Papadimitriou, P. Gogas, and V. Plakandaras, “Testing exchange rate models in a small open economy: An SVR approach,” Bull. Appl. Econ., vol. 3, no. 2, pp. 9–29, 2016.
[15]A. Irankhah, M. H. Yaghmaee, and S. Ershadi-Nasab, “Optimized short-term load forecasting in residential buildings based on deep learning methods for different time horizons,” J. Build. Eng., vol. 84, p. 108505, 2024. doi: 10.1016/j.jobe.2024.108505.
[16]B. H. Prakoso, “Implementasi support vector regression pada prediksi inflasi indeks harga konsumen,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 1, pp. 155–162, 2019. doi: 10.30812/matrik.v19i1.511.
[17]M. Ryu and K. Lee, “Selection of support vector candidates using relative support distance for sustainability in large-scale support vector machines,” Appl. Sci., vol. 10, no. 19, pp. 1–14, 2020. doi: 10.3390/app10196979.
[18]R. Zhang, Y. Li, Y. Gui, D. J. Armaghani, and M. Yari, “A stacked multiple kernel support vector machine for blast induced flyrock prediction,” Geohazard Mech., Jan. 2024. doi: 10.1016/j.ghm.2024.01.002.
[19]B. M. Henrique, V. A. Sobreiro, and H. Kimura, “Stock price prediction using support vector regression on daily and up to the minute prices,” J. Financ. Data Sci., vol. 4, no. 3, pp. 183–201, 2018. doi: 10.1016/j.jfds.2018.04.003.
[20]E. S. Hedianti, “Peramalan harga saham dengan menggunakan metode support vector regression (SVR),” unpublished, 2019.
[21]D. Sepri and A. Fauzi, “Prediksi harga cabai merah menggunakan support vector regression,” CBIS Journal, vol. 8, no. 2, pp. 1–5, 2020.
[22]M. Awad and R. Khanna, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers. Springer, 2015. [Online]. Available: https://link.springer.com/book/10.1007/978-1-4302-5990-9.
[23]G. Astudillo, R. Carrasco, C. Fernández-Campusano, and M. Chacón, “Copper price prediction using support vector regression technique,” Appl. Sci., vol. 10, no. 19, pp. 1–13, 2020. doi: 10.3390/APP10196648.
[24]R. Babagoli and M. Rezaei, “Prediction of moisture resistance of asphalt mastics modified by liquid anti stripping based on support vector regression, artificial neural network and kernel-based support vector regression methods,” Constr. Build. Mater., vol. 335, no. March, p. 127480, 2022. doi: 10.1016/j.conbuildmat.2022.127480.
[25]A. Hermawan, I. W. Mangku, N. K. K. Ardana, and H. Sumarno, “Analisis support vector regression dengan algoritma grid search untuk memprediksi harga saham,” J. Math. Its Appl., vol. 18, no. 1, pp. 41–60, 2022. doi: 10.29244/milang.18.1.41-60.
[26]S. Xie, H. Lin, Y. Chen, H. Duan, H. Liu, and B. Liu, “Prediction of shear strength of rock fractures using support vector regression and grid search optimization,” Mater. Today Commun., vol. 36, no. May, p. 106780, 2023. doi: 10.1016/j.mtcomm.2023.106780.
[27]W. Yi, I. V. Gerasimov, S. A. Kuzmin, and H. He, “An intelligent algorithm of support vector regression parameters optimization in soft measurements,” Proc. 19th Int. Conf. Soft Comput. Meas. SCM 2016, no. 1, pp. 404–406, 2016. doi: 10.1109/SCM.2016.7519794.
[28]R. E. Caraka, H. Yasin, and A. W. Basyiruddin, “Peramalan crude palm oil (CPO) menggunakan support vector regression kernel radial basis,” J. Mat., vol. 7, no. 1, p. 43, 2017. doi: 10.24843/jmat.2017.v07.i01.p81.
[29]D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021. doi: 10.7717/PEERJ-CS.623.
[30]R. Fitriana, D. Sugiarto, M. K. Hidayat, and Y. E. H. Turnip, “Perancangan model sistem intelijensia bisnis,” Wawasan Ilmu, 2024.
[31]K. V. Metre, A. Mathur, R. P. Dahake, Y. Bhapkar, J. Ghadge, P. Jain, and S. Gore, “An introduction to Power BI for data analysis,” Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 1s, pp. 142–147, 2023.
[32]R. Fitriana, J. Saragih, and N. Luthfiana, “Model business intelligence system design of quality products by using data mining in R Bakery Company,” IOP Conf. Ser. Mater. Sci. Eng., vol. 277, no. 1, 2017. doi: 10.1088/1757-899X/277/1/012005.
[33]S. Widjaja and T. Mauritsius, “The development of performance dashboard visualization with Power BI as platform,” Int. J. Mech. Eng. Technol., vol. 10, no. 5, pp. 235–249, 2019. [Online]. Available: http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=5.
[34]R. Adinugroho, Perbandingan rasio split data training dan data testing menggunakan metode LSTM dalam memprediksi harga indeks saham Asia. 2022. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/67314.
[35]A. N. Safira, B. Warsito, and A. Rusgiyono, “Analisis support vector regression (SVR) dengan algoritma grid search time series cross validation untuk prediksi jumlah kasus terkonfirmasi COVID-19 di Indonesia,” J. Gaussian, vol. 11, no. 4, pp. 512–521, 2023. doi: 10.14710/j.gauss.11.4.512-521.
[36]F. Kaliyadan and V. Kulkarni, “Types of variables, descriptive statistics, and sample size,” Indian Dermatol. Online J., vol. 10, no. 4, pp. 481–485, 2017. doi: 10.4103/idoj.IDOJ.
[37]Y. Dong, “Descriptive statistics and its applications,” Highlights Sci. Eng. Technol., vol. 47, pp. 16–23, 2023. doi: 10.54097/hset.v47i.8159.
[38]A. Zakrani, A. Najm, and A. Marzak, “Support vector regression based on grid-search method for agile software effort prediction,” Colloq. Inf. Sci. Technol. CIST, vol. 2018-Octob, pp. 492–497, 2018. doi: 10.1109/CIST.2018.8596370.
[39]A. W. Ishlah, S. Sudarno, and P. Kartikasari, “Implementasi gridSearchCV pada support vector regression (SVR) untuk peramalan harga saham,” J. Gaussian, vol. 12, no. 2, pp. 276–286, 2023. doi: 10.14710/j.gauss.12.2.276-286.