Model Zero-One Linear Programming untuk Penjadwalan Raw Mill dan Cement Mill

Main Article Content

Eri Wirdianto
Ericho Chandra Arnes


Penjadwalan, Programa Linier, Zero-One Linear Programming, Waktu Beban Puncak (WBP)


The scheduling of electrical energy usage during Peak Load Period (PLP) is a complicated problem that has been faced by PT Semen Padang after Indonesian Power Company (PLN) implemented the demarcation regulation of electrical energy usage during PLP (6:00 – 10:00 p.m.) which may not exceed 44.100 kWH. This regulation forces Production Department of PT Semen Padang to arrange the “on (1) or off (0)” schedule for the Raw Mills and Cement Mills during PLP. A Raw Mill or Cement Mill can be switched-off if the specified criteria are satisfied. Those criteria refer to the achievement of daily production targets, silo content at PLP, and the requirement for particular Raw Mill or Cement Mill to be off during those 4 hours of PLP. Meanwhile, the constraints are related to the length of machining hours of Raw Mill, Kiln or Cement Mill before preventive maintenance takes place. To solve this problem, a scheduling model for Raw Mills and Cement Mills on-off during PLP is then developed using a linear programming approach. The decision variables are the “on-off” state of Raw Mills and Cement Mills during PLP, while the objective function is to minimize the penalty expense of energy used during PLP. The developed scheduling model has the ability to solve the problem of the “on-off” assignment for Raw Mills and Cement Mills from Indarung II to Indarung V. This scheduling model can decrease the penalty of electrical energy expense during PLP from Rp. 3.07 billion to Rp. 1.79 billion.


Download data is not yet available.


[1]     M. Nasir, “Metode Penghematan Energi Listrik dengan Pola Pengaturan Pembebanan”. Seminar Nasional Fakultas Teknik-UR, Pekanbaru, 29-30 Juni 2010, pp.1-13.

[2]     M. H. Amini, J. Frye, M. D. Llić, O. Karabasoglu. "Smart Residential Energy Scheduling Utilizing Two Stage Mixed Integer Linear Programming". North American Power Symposium (NAPS), Charlotte, NC, USA, 4-6 October 2015, pp.1-6.

[3]     A. Lamghari, R. Dimitrakopoulos, J. A. Ferland. A Hybrid Method Based on Linear Programming and Variable Neighborhood Descent for Scheduling Production in Open-pit Mines. Journal of Global Optimization, Volume 63, No 3, pp.555-582, 2014.

[4]     D.W. Fogarty, J. H. Blackstone Jr, T. R. Hoffmann. Production and Inventory Management, 2nd Edition. Cincinati: South Western Publishing Co., 1991.

[5]     D. D. Bedworth and J. E. Bailey. Integrated Production Control System: Management, Analysis, Design, 2nd Edition. New York: John Willey and Sons, 1987.

[6]     H. Suwa and H. Sandoh. Online Scheduling in Manufacturing. London: Springer-Verlag, 2013.

[7]     W. J. Stevenson. Operations Management, 12th Edition. New York: McGraw-Hill Education, 2015.

[8]     A. R. Ravindran. Operations Research. Singapore: John Wiley, 1987.

[9]     T. D. Tjutju and D. Ahmad. Operations Research : Model-Model Pengambilan Keputusan. Bandung: Sinar Baru Algesindo, 1994.

[10]  M. S. Bazaara, J. J. Jarvis, H. D. Sherali. Linear Programming and Network Flows, 4th Edition. New Jersey: John Wiley & Sons, 2010.

[11]  K. Genova and V. Guliashki. "Linear Integer Programming Methods and Approaches – A Survey". Cybernetics and Information Technologies,  Volume 11, No 1, pp.3-25, 2011.

[12]  H. Triha, A. S. IndrapriyatnaJ. Jonrinaldi. "Algoritma Penentuan Ukuran Batch Integer  pada Penjadwalan Flowshop Satu Mesin". Jurnal Optimasi Sistem Industri, Volume 15, No 1, pp.1-15, 2016.

[13]  E. Wirdianto, D. Regenie, W. Wisnel. "Aplikasi Algoritma Hybrid dalam Penentuan Rute Pendistribusian Produk (Studi Kasus: PT Enseval Putera Megatrading)". Jurnal Optimasi Sistem Industri, Volume 15, No 2, pp.171-180, 2016.

[14]  G. H. G. Fonseca,  H. G. SantosE. G. Carrano. "Integer Programming Techniques for Educational Timetabling". European Journal of Operational Research, Volume 262, pp.28-39, 2017.

[15]  D. S. Chen, R. G. Batson, Y. Dang. Applied Integer Programming - Modelling and Solution. New Jersey: John Wiley & Sons, 2010.

[16]  F. S. Hillier and G. J. Lieberman. Introduction to Operation Research, 10th Edition. New York: McGraw-Hill Inc, 2015.

[17]  T. M. Simatupang. Pemodelan Sistem. Klaten: Penerbit Nindita, 1995.

[18]  R.E. Walpole, R. H. Myers, S. L. Myers, K. Ye. Probability and Statistics for Engineers and Scientists, 9th Edition. Boston: Pearson Education, 2012.